

© 2018 NXP B.V.

Implementing an IEEE 1588 V2 on i.MX RT

Using PTPd, FreeRTOS, and lwIP TCP/IP

stack

1. Introduction

This application note describes the implementation of

the IEEE 1588 V2 Precision Time Protocol (PTP) on

the i.MX RT MCUs running FreeRTOS OS. The IEEE

1588 standard provides accurate clock synchronization

for distributed control nodes in industrial automation

applications.

The implementation runs on the i.MX RT10xx

Evaluation Kit (EVK) board with i.MX RT10xx MCUs.

The demo software is based on the NXP MCUXpresso

SDK 2.4.x IDE for i.MX RT10xx EVK boards. The

demo is a PTP daemon (PTPd) using the lwIP TCP/IP

stack shipped with the MCUXpresso SDK IDE and runs

on the FreeRTOS OS. PTPd is an open-source

implementation of the PTP.

This document describes the IEEE 1588 protocol basics,

the IEEE 1588 functions on i.MX RT10xx MCUs, and

the detailed description of the IEEE 1588 demo

software including how to port the PTPd for Amazon

FreeRTOS OS on i.MX RT10xx MCUs and how to

enable the ENET output compare function to monitor

the clock synchronization status. This document also

describes how to build and run the demo.

NXP Semiconductors Document Number: AN12149

Application Note Rev. 1 , 09/2018

Contents

1. Introduction ...1
2. IEEE 1588 basic overview ..2

2.1. Synchronization principle .. 3
2.2. Timestamping ... 5

3. IEEE 1588 functions on i.MX RT6
3.1. Adjustable timer module .. 6
3.2. Transmit timestamping ... 8
3.3. Receive timestamping .. 8
3.4. Time synchronization ... 8
3.5. Input capture and output compare block 8

4. IEEE 1588 implementation for i.MX RT9
4.1. Hardware components .. 9
4.2. Software components ... 10

5. IEEE1588 demo software detailed description11
5.1. i.MXRT SDK IDE ENET driver update 12
5.2. lwIP TCP/IP porting update 13
5.3. PTPd porting on FreeRTOS OS 17
5.4. FreeRTOS OS tasks and board configuration 22

6. Running the IEEE1588 demo ..23
6.1. Hardware setup ... 23
6.2. Clock synchronicity measuring 24

7. Conclusion ...26
8. Acronyms and abbreviations ...27
9. Revision history ...27

IEEE 1588 basic overview

Implementing an IEEE 1588 V2 on i.MX RT Using PTPd, FreeRTOS, and lwIP TCP/IP stack, Rev. 1, 09/2018

2 NXP Semiconductors

2. IEEE 1588 basic overview

The IEEE 1588 standard is known as the Precision Clock Synchronization Protocol for Networked

Measurement Control Systems, also known as Precision Time Protocol (PTP). The IEEE 1588 PTP

enables the clocks to be distributed across an Ethernet™ network and accurately synchronized using a

process where the distributed nodes exchange timestamped messages.

The technology of the standard was originally developed by Agilent Technologies, Inc. and is used for

distributed measuring and control tasks. The challenge is to synchronize the networked measuring

devices with each other in terms of time, making them able to record measured values and providing

them with a precise system timestamp. Based on this timestamp, the measured values can then be

correlated with each other.

Typical applications of the IEEE 1588 time synchronization include:

• Time-sensitive telecommunication services that require precise time synchronization between

communicating nodes.

• Industrial network switches that synchronize sensors and actuators over a single-wire distributed

control network to control automated assembly processes.

• Powerline networks that synchronize across large-scale distributed power grid switches to enable

smooth transfer of power.

• Test/measurement devices that must maintain accurate time synchronization with the device

under test in many different operating environments.

• Printing machines, cooperative robotic systems, and residential Ethernet.

These applications require precise clock synchronization between the devices with accuracy in the

sub-microsecond range. It is a remarkable feature of IEEE 1588 that this synchronization precision is

achieved through regular Ethernet connectivity with standard Ethernet frames.

This solution enables nearly any device of any performance to participate in high-precision

synchronized networks that are simple to operate and configure.

Other key benefits of the IEEE 1588 protocol include:

• Convergence times of less than a minute for sub-microsecond synchronization between

heterogeneous distributed devices with different clocks, resolution, and stability.

• Automatic configuration and segmentation. Each node uses the Best Master Clock (BMC)

algorithm to determine the best clock in the segment. Every PTP node stores its features within a

specified dataset. These features are transmitted to other nodes within sync telegrams. Based on

this, the other nodes are able to synchronize their data sets with the features of the actual master

and can adjust their clocks. The cyclic running of the BMC also allows hot swapping; that is,

nodes can be connected or removed during propagation time.

• Simple configuration and operation with low computing resource requirements and network

bandwidth consumption.

IEEE 1588 basic overview

Implementing an IEEE 1588 V2 on i.MX RT Using PTPd, FreeRTOS, and lwIP TCP/IP stack, Rev. 1, 09/2018

NXP Semiconductors 3

2.1. Synchronization principle

Network clocks are organized in a master-slave hierarchy. IEEE 1588 identifies the master clock and

then establishes two-way timing exchange by which the master sends messages to its slaves to initiate

synchronization. Each slave then responds to synchronize itself to its master. This sequence is repeated

throughout the specified network to achieve and maintain clock synchronization.

The process starts with one node (master clock) transmitting a sync telegram that contains the estimated

transmission time. The exact transmission time of the sync telegram is captured by a clock and

transmitted in a second follow-up message. By comparing the timestamp information contained within

the first and second telegrams against its own clock, the receiver can calculate the time difference

between its own clock and the master clock (see Figure 1). The sync and follow-up messages are sent as

a multicast. Some IEEE 1588 systems enable hardware timestamping and the insertion of actual

timestamps into the sync messages. In this case, the follow-up messages are not needed (one-step mode

of operation).

Figure 1. Offset and delay measurement—sync message, follow-up message

The telegram propagation time is determined cyclically in a second transmission process between the

slave and the master (delay telegrams). The slave can then adjust its clock and adapt it to the current bus

propagation time (see Figure 2). The delay_req and delay_resp messages are point-to-point, but sent

with a multicast address for simplicity reasons.

IEEE 1588 basic overview

Implementing an IEEE 1588 V2 on i.MX RT Using PTPd, FreeRTOS, and lwIP TCP/IP stack, Rev. 1, 09/2018

4 NXP Semiconductors

Figure 2. Offset and delay measurement—delay messages

Figure 3 shows an example of the IEEE 1588 synchronization sequence (one cycle) and the calculation

of the actual offset and delay between the master and slave nodes.

Figure 3. IEEE 1588 synchronization message sequence

For more information about the IEEE 1588 standard, visit the web page of the National Institute of

Standards and Technology (www.nist.gov).

https://www.nist.gov/

IEEE 1588 basic overview

Implementing an IEEE 1588 V2 on i.MX RT Using PTPd, FreeRTOS, and lwIP TCP/IP stack, Rev. 1, 09/2018

NXP Semiconductors 5

2.2. Timestamping

The PTP protocol can be completely implemented into the software using a standard Ethernet module.

Because the timestamp information is applied at the application level, the delay fluctuation introduced

by the software stack running on both the master and slave devices means that only a limited precision

can be achieved (see Figure 4).

Figure 4. Software timestamp implementation

Figure 5. Hardware timestamp implementation

IEEE 1588 functions on i.MX RT

Implementing an IEEE 1588 V2 on i.MX RT Using PTPd, FreeRTOS, and lwIP TCP/IP stack, Rev. 1, 09/2018

6 NXP Semiconductors

It is possible to minimize the impact of the protocol stack delay by taking timestamps closer to the

physical interface, that is, at the MAC or PHY layers (see Figure 5). A dedicated hardware with

timestamping capabilities (such as the MAC-NET peripheral module or the 10/100-Mbps Ethernet MAC

(ENET) of the NXP i.MX RT 1050 and 1020) enables synchronization with significantly improved

accuracy.

3. IEEE 1588 functions on i.MX RT

The i.MX RT10xx devices integrate the MAC-NET core (in conjunction with a 10/100-Mbit/s MAC) to

accelerate the processing of various common networking protocols, such as IP, TCP, UDP, and ICMP,

providing wire speed services to client applications. The unified DMA (uDMA), internal to the ENET

module, optimizes data transfer between the ENET core and the SoC and supports the enhanced buffer

descriptor programming model to support IEEE 1588 functionality. To enable IEEE 1588 (or similar)

time synchronization protocol implementations, the MAC is combined with a timestamping module to

support precise timestamping of incoming and outgoing frames. Set the EN1588 bit in the ENET_ECR

(Ethernet Control Register) to enable 1588 support.

Figure 6. IEEE 1588 functions overview

3.1. Adjustable timer module

The adjustable timer module (TSM) implements the Free-Running Counter (FRC), which generates the

timestamps. The FRC operates with the timestamping clock, which can be set to any value, depending

on your system requirements.

Through a dedicated correction logic, the timer can be adjusted to enable synchronization with a remote

master and provide synchronized timing reference to the local system. The timer can be configured to

trigger an interrupt after a fixed time period to allow synchronization of software timers or perform other

synchronized system functions.

IEEE 1588 functions on i.MX RT

Implementing an IEEE 1588 V2 on i.MX RT Using PTPd, FreeRTOS, and lwIP TCP/IP stack, Rev. 1, 09/2018

NXP Semiconductors 7

The timer is typically used to implement a period of one second; hence, its value ranges from 0 to

(1 × 109) - 1. The period event can trigger an interrupt and the software can maintain the seconds’ and

hours’ time values as necessary.

The adjustable timer consists of a programmable counter/accumulator and a correction counter. The

periods of both counters and their increment rates are freely configurable, allowing for a very fine tuning

of the timer.

Figure 7. Adjustable timer implementation detail

The counter provides the current time. During each timestamping clock cycle, a constant value is added

to the current time, as programmed in ENET_ATINC (Timestamping Clock Period Register). The value

depends on the selected timestamping clock frequency. For example, if it operates at 125 MHz, setting

the increment to eight represents 8 ns.

The period, configured in ENET_ATPER (Timer Period Register), defines the modulo when the counter

wraps. In a typical implementation, the period is set to 1 × 109 so that the counter wraps every second.

All timestamps represent the absolute nanoseconds within a period of 1 ns. When this period is reached,

the counter wraps to start again, respecting the period modulo. This means it does not necessarily start

from zero, but the counter is loaded with the value (Current + Inc – (1 × 109)), assuming the period is set

to 1 × 109.

The correction counter is completely independent and increments by one with each timestamping clock

cycle. When the counter reaches the value configured in ENET_ATCOR (Timer Correction Register), it

restarts and instructs the timer to increment by the correction value once, instead of the normal value.

The normal and correction increments are configured in ENET_ATINC. To speed up the timer, set the

correction increment higher than the normal increment value. To slow the timer down, set the correction

increment lower than the normal increment value.

The correction counter defines only the distance of the corrective actions, not the amount. This allows

for very fine corrections and low jitter (in the range of 1 ns), independent of the selected clock

frequency.

IEEE 1588 functions on i.MX RT

Implementing an IEEE 1588 V2 on i.MX RT Using PTPd, FreeRTOS, and lwIP TCP/IP stack, Rev. 1, 09/2018

8 NXP Semiconductors

3.2. Transmit timestamping

Only 1588 event frames must be timestamped on transmit. The client application (for example, the

MAC driver) shall detect 1588 event frames and set the TS bit in the TxBD (Enhanced Transmit Buffer

Descriptor) together with the frame.

If TxBD[TS] is set, the MAC records the timestamp for the frame in ENET_ATSTMP (Timestamp of

Last Transmitted Frame Register). The TS_AVAIL bit in ENET_EIR (Interrupt Event Register) is set to

indicate that a new timestamp is available.

The software implements a handshaking procedure by setting TxBD[TS] when it transmits the frame for

which a timestamp is needed and waits for ENET_EIR[TS_AVAIL] to determine when the timestamp is

available. The timestamp is then read from the ENET_ATSTMP register. This is done for all event

frames. Other frames do not use TxBD[TS] and do not interfere with the timestamp capture.

3.3. Receive timestamping

When a frame is received, the MAC latches the value of the timer when the frame’s Start of Frame

Delimiter (SFD) field is detected and provides the captured timestamp in the 1588 timestamp field

defined in RxBD (Enhanced uDMA Receive Buffer Descriptor). This is done for all received frames.

3.4. Time synchronization

The adjustable timer module is available to synchronize the local clock of a node to a remote master. It

implements a free-running 32-bit counter and also contains an additional correction counter.

The correction counter increases or decreases the rate of the free-running counter, enabling very fine

granular changes of the timer for synchronization, yet adding only a very low jitter when performing

corrections.

The application software implements the required control algorithm (in the slave scenario), setting the

correction to compensate for local oscillator drifts and locking the timer to the remote master clock on

the network.

The timer and all timestamp-related information should be configured to show the true nanosecond

value of one second (the timer is configured to have a period of one second). Hence, the values range

from 0 to (1 × 109) – 1. In this application, the seconds’ counter is implemented in software using an

interrupt function that is executed when the nanoseconds’ counter wraps at 1 × 109.

3.5. Input capture and output compare block

The input capture and output compare block can be used to provide precise hardware timing for input

and output events. The IEEE 1588 timer has four channels. Each channel supports input capture and

output compare using the 1588 counter.

In the input capture mode, the TCCRn (Timer Compare Capture Register, n = 1, 2, 3, 4) latches the time

value when the corresponding external event occurs. An event can be the rising, falling, or either edge of

one of the 1588_TMRn signals. An event causes the corresponding TCSRn[TF] (Timer Control Status

IEEE 1588 implementation for i.MX RT

Implementing an IEEE 1588 V2 on i.MX RT Using PTPd, FreeRTOS, and lwIP TCP/IP stack, Rev. 1, 09/2018

NXP Semiconductors 9

Register) timer flag to be set, indicating that an input capture occurred. If the corresponding interrupt is

enabled with the TCSRn[TIE] field, an interrupt can be generated.

In the output compare mode, the TCCRn compare registers are loaded with the time at which the

corresponding event shall occur. When the ENET free-running counter value matches the output

compare reference value in the TCCRn register, the corresponding flag (TCSRn[TF]) is set, indicating

that an output compare occurred. The corresponding interrupt (if enabled by TCSRn[TIE]) is generated.

The corresponding 1588_TMRn output signal is asserted according to TCSRn[TMODE].

4. IEEE 1588 implementation for i.MX RT

The MIMXRT10xx Evaluation Kit (EVK) board is used as the hardware platform for hardware

timestamping-based IEEE 1588 V2 PTP. The solution uses the MCUXpresso SDK IDE for the

i.MX RT10xx EVK board, which includes the NXP ENET driver of the i.MX RT10xx MCU, the PHY

driver, the ported FreeRTOS OS, and the ported lwIP TCP/IP stack for the EVK-MIMXRT10xx board.

The IEEE1588 V2 PTP is implemented by the PTP daemon application, which is an open-source

implementation of the PTP. Figure 8 shows the hardware and software components of this solution.

Fr
ee

R
TO

S

ENET Driver

lwIP TCP/IP stack

PTP daemon

S
D

K
 f

o
r

i.
M

X

R
T

1
0
x
x Software

Ethernet MAC-NET Module

i.MX RT MCU

Ethernet PHY

EVK-MIMXRT10xx

Hardware

PHY Driver

M
II

Figure 8. IEEE 1588 solution for i.MX RT10xx MCU

4.1. Hardware components

The i.MX RT10xx EVK board is the platform designed to showcase the most common features of the

i.MX RT10xx processor. The i.MX RT10xx EVK board is an entry-level development board which

helps you to quickly become familiar with the processor and expedites you to implement your own

designs. The main features of the i.MX RT10xx EVK board include:

• i.MX RT10xx MCU.

IEEE 1588 implementation for i.MX RT

Implementing an IEEE 1588 V2 on i.MX RT Using PTPd, FreeRTOS, and lwIP TCP/IP stack, Rev. 1, 09/2018

10 NXP Semiconductors

• 32-MB @ 166 MHz SDRAM.

• 512-Mbit hyper flash (only available for i.MX RT1050), 64-Mbit quad SPI flash, and TF card

slot.

• 10/100-Mbit/s Ethernet connector with KSZ8081RNB PHY.

• USB 2.0 OTG/host connectors.

• 3.5-mm stereo audio headphone jack, microphone, and speaker-out connectors.

• Display connector and CMOS sensor interface (not available on i.MX RT1020).

• CAN bus connector, OpenSDA with DAP-link, and Arduino interface.

• 5-V DC jack for power supply.

i.MX RT1050 is the first crossover processor in the industry, which is a new processor family featuring

NXP’s advanced implementation of the Arm® Cortex®-M7 core. It is designed to support the

next-generation IoT applications with a high level of integration and security balanced with MCU-level

usability. It operates at speeds of up to 600 MHz to provide high CPU performance with the best

real-time functionality. i.MX RT 1050 provides various memory interfaces, including SDRAM, raw

NAND flash, NOR flash, SD/eMMC, quad SPI, HyperBus, and a wide range of other interfaces to

connect peripherals, such as WLAN, Bluetooth™, GPS, display, and camera sensors. As the other i.MX

processors, i.MX RT1050 also integrates rich audio and video features including LCD display, basic 2D

graphics, camera interface, and SPDIF and I2S audio interfaces.

i.MX RT1060 doubles the on-chip SRAM to 1 MB, while keeping pin-to-pin compatibility with i.MX

RT1050. It introduces additional features ideal for real-time applications, such as high-speed GPIO,

CAN-FD, and synchronous parallel NAND/NOR/PSRAM controller. It also runs at 600 MHz.

i.MX RT1020 provides a high-performance feature set in low-cost LQFP packages, further simplifying

your board design and layout. This processor removes the multimedia component and reduces the

on-chip SRAM to 256 KB for low-cost applications. i.MX RT1020 runs at 500 MHz.

For more information, see the corresponding reference manual on www.nxp.com.

4.2. Software components

The IEEE 1588 software implementation includes the MCUXpresso SDK IDE for the i.MX RT10xx

EVB board and PTP daemon. The MCUXpresso SDK IDE is a software framework for developing

applications on NXP MCUs including peripheral drivers, middleware, and real-time operating system.

4.2.1. FreeRTOS OS

FreeRTOS OS is a real-time kernel (or real-time scheduler) on top of which you can build embedded

applications that meet strict real-time requirements. FreeRTOS OS provides methods for multiple tasks,

mutexes, semaphores, and software timers. A tickless mode is provided for low-power applications. The

thread priorities used by the scheduler decide which thread should be executing. The version of the

FreeRTOS OS provided by the MCUXpresso SDK IDE for the i.MX RT10xx EVB board is 10.0.1. The

FreeRTOS OS package integrated into the MCUXpresso IDE has these features:

• Removed the files not related to the SDK IDE, such as extensions to the FreeRTOS OS (CLI,

FAT_SL, and UDP) and folders, such as the demo and nested folders.

http://www.nxp.com/

IEEE1588 demo software detailed description

Implementing an IEEE 1588 V2 on i.MX RT Using PTPd, FreeRTOS, and lwIP TCP/IP stack, Rev. 1, 09/2018

NXP Semiconductors 11

• Added the SystemCoreClock global variable to the FreeRTOS OS port.c and FreeRTOSConfig.h

files.

• Enabled the tickless mode. For more information, see: www.nxp.com/freertos.

• Enabled the KDS Task Aware Debugger, applied the FreeRTOS patch to enable the

configRECORD_STACK_HIGH_ADDRESS macro.

• Enabled the -flto optimization in GCC by adding __attribute__((used)) for vTaskSwitchContext.

For detailed information about the FreeRTOS OS and its distribution, see www.freertos.org.

4.2.2. lwIP TCP/IP stack

lwIP is a light-weight implementation of the TCP/IP protocol suite that is freely available in the C

source code and can be downloaded from the development webpage. It is completely modular and small

enough to reduce the RAM usage for use in small embedded systems. The core stack is an IP

implementation, on top of which you can choose to add TCP, UDP, DHCP, and many other protocols

according to your needs and the memory available in the designed system. For more information about

lwIP, see www.nongnu.org/lwip.

The MCUXpresso SDK IDE for EVK-MIMXRT1050 integrates the lwIP TCP/IP stack, which runs on

top of the MCUXpresso SDK IDE Ethernet driver with the i.MX RT10xx EVB board. The lwIP package

version in the SDK IDE for the i.MX RT10xx EVB board is 2.4.x. For more information, see the lwIP

TCP/IP Stack and MCUXpresso SDK Integration User’s Guide (document MCUXSDKLWIPUG).

4.2.3. PTP daemon

PTP provides precise time coordination of Ethernet LAN-connected computers, which is designed

primarily for instrumentation and control systems. PTP daemon (PTPd) is an open-source

implementation of PTP version 2, as defined by IEEE Std 1588-2008.

PTPd coordinates the clocks of a group of LAN-connected computers with each other. It can achieve

microsecond-level coordination even on the limited platform. PTPd is available in the C source code and

easy to port on the FreeRTOS OS for embedded systems. Most of the system-related code is in the

<install_dir>/src/dep folder. The PTPd package version used in this demo is version 2.2.2. It is

available at github.com/ptpd/ptpd/releases.

5. IEEE1588 demo software detailed description

This demo application is only compiled and tested with the IAR Embedded Workbench® for Arm IDE

8.30. The SDK version is 2.4.x and the PTPd version is 2.2.2. The i.MX RT10xx ENET supports IEEE

1588 with a hardware timestamp. To enable the hardware timestamp feature and run the demo on the

i.MX RT10xx EVB board, the original lwIP TCP/IP port-related code must be updated. The update for

the ENET driver is needed to test the clock offset converging range and bug fixes related to the IEEE

1588 functions.

../../../../Users/nxa15705/Downloads/www.nxp.com/freertos
../../../../Users/nxa15705/Downloads/www.freertos.org
../../../../Users/nxa15705/Downloads/www.nongnu.org/lwip
https://www.nxp.com/doc/MCUXSDKLWIPUG
https://github.com/ptpd/ptpd/releases

IEEE1588 demo software detailed description

Implementing an IEEE 1588 V2 on i.MX RT Using PTPd, FreeRTOS, and lwIP TCP/IP stack, Rev. 1, 09/2018

12 NXP Semiconductors

5.1. i.MXRT SDK IDE ENET driver update

The ENET driver update includes bug fixes and enabling the ENET output compare function for test

purposes. The output compare function is enabled to monitor the converging of the local slave clock

offset to the remote master Ethernet LAN-connected i.MX RT10xx.

To get the correct IEEE 1588 timer value, the following code in red must be added to the

ENET_Ptp1588GetTimer function in the fsl_enet.c file, and the ENET_1588TIME_DELAY_COUNT

shall be large enough to have a minimum of six-clock-cycle delay to get the accurate 1588 time.

void ENET_Ptp1588GetTimer(ENET_Type *base, enet_handle_t *handle, enet_ptp_time_t *ptpTime)

{

 ……

 uint16_t count = ENET_1588TIME_DELAY_COUNT;

 ……

 base->ATCR |= ENET_ATCR_CAPTURE_MASK;

 __DSB();

 /* Add at least six clock cycle delay to get accurate time.

 It's the requirement when the 1588 clock source is slower

 than the register clock.

 */

 while (count--)

 {

 __NOP();

 }

 ……

}

The ENET 1588 timer has four channels that support input capture and output compare using the 1588

counter. To monitor the synchronicity between the master and slave clocks while the demo is running,

the ENET output compare feature must be enabled to generate a Pulse-Per-Second (PPS) signal while

the free-running counter value matches the output compare reference value. If the master and slave

clocks are synchronized properly and the output compare reference values of the master and slave are set

the same, the 1588 timer output signals of the master and slave synchronization can be observed using

an oscilloscope.

The code changes to enable the output compare in fsl_enet.h include the additional enum value in the

enum type enet_event_event definition and additional two members in the struct _enet_handle type:

The code in red must be added or modified.

typedef enum _enet_event

{

 ……

 kENET_TimeStampAvailEvent, /*!< Time stamp available event.*/

 kENET_TimeStampCaptureEvent /*!< Time Stamp capture event. */

} enet_event_t

IEEE1588 demo software detailed description

Implementing an IEEE 1588 V2 on i.MX RT Using PTPd, FreeRTOS, and lwIP TCP/IP stack, Rev. 1, 09/2018

NXP Semiconductors 13

struct _enet_handle

{

 ……

#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE

 enet_ptp_time_data_ring_t txPtpTsDataRing;

 enet_ptp_timer_channel_t mPtpTmrChannel; /*!< PTP 1588 timer channel. */

 uint32_t ptpNextCounter; /*!< PTP 1588 next output compare counter value */

#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */

};

To enable the output compare feature in the IEEE 1588 timer, the red code must be added or modified in

the ENET_Ptp1588Configure and ENET_Ptp1588TimerIRQHandler functions.

void ENET_Ptp1588Configure(ENET_Type *base, enet_handle_t *handle, enet_ptp_config_t

*ptpConfig)

{

……

handle->msTimerSecond = 0;

 handle->mPtpTmrChannel = ptpConfig->channel;

 /* Set the IRQ handler when the interrupt is enabled. */

 s_enetTxIsr = ENET_TransmitIRQHandler;

 ……

}

void ENET_Ptp1588TimerIRQHandler(ENET_Type *base, enet_handle_t *handle)

{

 ……

 else if (kENET_TsAvailInterrupt & base->EIR)

 {

 ……

 }

 else if (base->CHANNEL[handle->mPtpTmrChannel].TCSR & ENET_TCSR_TF_MASK)

 {

 ENET_Ptp1588SetChannelCmpValue(base, handle->mPtpTmrChannel, handle->ptpNextCounter);

 do {

 ENET_Ptp1588ClearChannelStatus(base, handle->mPtpTmrChannel);

 } while (true == ENET_Ptp1588GetChannelStatus(base, handle->mPtpTmrChannel));

 }

 ……

}

5.2. lwIP TCP/IP porting update

This section describes the modifications of the lwIP porting code to support the PTP demo. This

involves the lwipopts.h, ethernetif.h, and ethernetif.c files in the

<sdk_install_dir>/middleware/lwip/port folder.

The PTP daemon demo uses the SO_REUSEADDR option for the socket, DNS (Domain Name System)

protocol, and IGMP (Internet Group Management Protocol) protocol. It does not use DHCP (Dynamic

Host Configuration Protocol) with a static IP address.

IEEE1588 demo software detailed description

Implementing an IEEE 1588 V2 on i.MX RT Using PTPd, FreeRTOS, and lwIP TCP/IP stack, Rev. 1, 09/2018

14 NXP Semiconductors

The following macros in lwipopts.h must be defined to the corresponding values:

/* SO_REUSE ==1: Enable SO_REUSEADDR option */

#define SO_REUSE 1

#ifndef LWIP_DHCP

#define LWIP_DHCP 0

#endif

/* ---------- DNS options ---------- */

#ifndef LWIP_DNS

#define LWIP_DNS 1

#endif

/* ---------- IGMP options ---------- */

/* LWIP_IGMP==1: Turn on IGMP module. */

#ifndef LWIP_IGMP

#define LWIP_IGMP 1

#endif

The default lwIP package in the SDK IDE release does not support PTP. The ENET initializing function

for lwIP does not involve any 1588 timer functions. The code update for ethernetif.h and ethernetif.c

mainly covers the ENET 1588 timer routines, such as initializing the 1588 timer, enabling the timer

channel output compare function for the test, setting/getting time, adjusting the 1588 timer frequency,

and getting the timestamp of the transmit/receive frames. All the code related to PTP is enclosed by the

#if LWIP_TPT and #endif pair.

This code snippet shall be added to ethernetif.h to declare the routines of the 1588 timer:

#if LWIP_PTP

#include "lwip_ptp.h"

#define ENET_NANOSECOND_ONE_SECOND 1000000000U

#define PTP_AT_INC (ENET_NANOSECOND_ONE_SECOND/PTP_CLOCK_FRE_RT)

void ethernet_ptptime_settime(enet_ptp_time_t *timestamp);

void ethernet_ptptime_gettime(enet_ptp_time_t *timestamp);

void ethernet_ptptime_adjfreq(int32_t ppb);

err_t enet_get_rxframe_time(enet_ptp_time_data_t *ptpTimeData);

err_t enet_get_txframe_time(enet_ptp_time_data_t *ptpTimeData);

#endif

The above functions are implemented in the ethernetif.c file. The ENET 1588 timer-initializing function

ethernet_ptptime_init () is implemented and called before returning from the enet_init() function. The

ethernet_ptptime_enablepps() function is implemented to enable the timer channel output compare

function for test purposes and called in the ethernet_ptptime_init () function according to the passed

parameter.

IEEE1588 demo software detailed description

Implementing an IEEE 1588 V2 on i.MX RT Using PTPd, FreeRTOS, and lwIP TCP/IP stack, Rev. 1, 09/2018

NXP Semiconductors 15

This is the code of the ethernet_ptptime_enablepps() function:

static void ethernet_ptptime_enablepps(struct ethernetif *ethernetif,

 enet_ptp_timer_channel_t tmr_ch)

{

 uint32_t next_counter = 0;

 uint32_t tmp_val = 0;

 /* clear capture or output compare interrupt status if have. */

 ENET_Ptp1588ClearChannelStatus(ethernetif->base, tmr_ch);

 /* It is recommended to double check the TMODE field in the

 * TCSR register to be cleared before the first compare counter

 * is written into TCCR register. Just add a double check. */

 tmp_val = ethernetif->base->CHANNEL[tmr_ch].TCSR;

 do {

 tmp_val &= ~(ENET_TCSR_TMODE_MASK);

 ethernetif->base->CHANNEL[tmr_ch].TCSR = tmp_val;

 tmp_val = ethernetif->base->CHANNEL[tmr_ch].TCSR;

 } while (tmp_val & ENET_TCSR_TMODE_MASK);

 tmp_val = (ENET_NANOSECOND_ONE_SECOND >> 1);

 ENET_Ptp1588SetChannelCmpValue(ethernetif->base, tmr_ch, tmp_val);

 /* Calculate the second the compare event timestamp */

 next_counter = tmp_val;

 /* Compare channel setting. */

 ENET_Ptp1588ClearChannelStatus(ethernetif->base, tmr_ch);

 ENET_Ptp1588SetChannelOutputPulseWidth(ethernetif->base, tmr_ch, false, 4, true);

 /* Write the second compare event timestamp and calculate

 * the third timestamp. Refer the TCCR register detail in the spec.*/

 ENET_Ptp1588SetChannelCmpValue(ethernetif->base, tmr_ch, next_counter);

 /* Update next counter */

 ethernetif->handle.ptpNextCounter = next_counter;

}

IEEE1588 demo software detailed description

Implementing an IEEE 1588 V2 on i.MX RT Using PTPd, FreeRTOS, and lwIP TCP/IP stack, Rev. 1, 09/2018

16 NXP Semiconductors

This code is the ENET 1588 timer initializing function ethernet_ptptime_init() and its related memories:

static struct ethernetif * ptp_ethernetif = NULL;

/* Buffers for store receive and transmit timestamp. */

//static sys_mutex_t ptp_mutex;

enet_ptp_time_data_t g_rxPtpTsBuff[ENET_RXBD_NUM];

enet_ptp_time_data_t g_txPtpTsBuff[ENET_TXBD_NUM]

static void ethernet_ptptime_init(struct ethernetif *ethernetif, uint32_t ptp_clk_freq,

 bool pps_en, enet_ptp_timer_channel_t tmr_ch)

{

 enet_ptp_config_t ptp_cfg;

 assert(ethernetif);

 ptp_ethernetif = ethernetif;

 /* Config 1588 */

 memset(&ptp_cfg, 0, sizeof(enet_ptp_config_t));

 ptp_cfg.channel = tmr_ch;

 ptp_cfg.ptpTsRxBuffNum = ENET_RXBD_NUM;

 ptp_cfg.ptpTsTxBuffNum = ENET_TXBD_NUM;

 ptp_cfg.rxPtpTsData = &g_rxPtpTsBuff[0];

 ptp_cfg.txPtpTsData = &g_txPtpTsBuff[0];

 ptp_cfg.ptp1588ClockSrc_Hz = ptp_clk_freq;

 ENET_Ptp1588Configure(ptp_ethernetif->base, &ptp_ethernetif->handle, &ptp_cfg);

 if (true == pps_en)

 {

 ethernet_ptptime_enablepps(ptp_ethernetif, tmr_ch);

 }

 else

 {

 ENET_Ptp1588SetChannelMode(ptp_ethernetif->base, tmr_ch, kENET_PtpChannelDisable, false);

 }

}

The syntax in red is used to call the ethernet_ptptime_init() function in the enet_init() function:

static void enet_init(struct netif *netif, struct ethernetif *ethernetif,

 const ethernetif_config_t *ethernetifConfig)

{

 ……

#if LWIP_PTP

 /* It's time to initialize the IE1588 function of ethernet */

ethernet_ptptime_init(ethernetif, PTP_CLOCK_FRE_RT, PTP_TEST_APP_ENABLE,

 PTP_TEST_APP_CHANNEL);

#endif

 ENET_ActiveRead(ethernetif->base);

}

The ethernet_ptptime_adjfreq() function adjusts the 1588 timer frequency by setting the non-zero

correction counter wrap-around value in the ENET_ATCOR register to define the number of timer clock

cycles to correct the 1588 timer’s time. The correction increment value is set in the INC_CORR field in

IEEE1588 demo software detailed description

Implementing an IEEE 1588 V2 on i.MX RT Using PTPd, FreeRTOS, and lwIP TCP/IP stack, Rev. 1, 09/2018

NXP Semiconductors 17

the ENET_ATINC register. The value of INC_CORR is larger than the value in the INC field to speed

up the 1588 timer. The value of INC_CORR is lower than the value in the INC field to slow down the

1588 timer.

This is the code of the ethernet_ptptime_adjfreq() function:

void ethernet_ptptime_adjfreq(int32_t incps)

{

 int32_t neg_adj = 0;

 uint32_t corr_inc, corr_period;

 assert(ptp_ethernetif);

 /*

 * incps means the increment rate (nanseconds per second)by which to

 * slow down or speed up the slave timer.

 * Positive ppb need to speed up and negative value need to slow down.

 */

 if (0 == incps)

 {

 ptp_ethernetif->base->ATCOR &= ~ENET_ATCOR_COR_MASK; /* Reset PTP frequency */

 return;

 }

 if (incps < 0)

 {

 incps = - incps;

 neg_adj = 1;

 }

 corr_period = (uint32_t)PTP_CLOCK_FRE_RT / incps;

 /* neg_adj = 1, slow down timer, neg_adj = 0, speed up timer */

 corr_inc = (neg_adj) ? (PTP_AT_INC - 1) : (PTP_AT_INC + 1);

 ENET_Ptp1588AdjustTimer(ptp_ethernetif->base, corr_inc, corr_period);

}

The ethernet_ptptime_settime(), ethernet_ptptime_gettime(), enet_get_rxframe_time(), and

enet_get_txframe_time() functions are implemented to wrap the ENET_Ptp1588GetTimer(),

ENET_Ptp1588SetTimer(), ENET_GetRxFrameTime(), and ENET_GetTxFrameTime() functions in the

ethernetif.c file.

5.3. PTPd porting on FreeRTOS OS

The default PTPd source code is for the FreeBSD, NetBSD, Mac OS X, and Linux operation systems.

To port the code to FreeRTOS OS with the lwIP and SDK drivers for the i.MX RT10xx EVB board, the

OS-related code, network-related code, and hardware timestamping code must be ported or added. The

ported work covers the PTPd tasks under the FreeRTOS OS, system time routines, system services,

software timer, interaction with network socket, and minor modification of the PTP protocol. The simple

code modifications required by the IAR Embedded Workbench IDE for Arm during compiling and

linking are not discussed in this document.

IEEE1588 demo software detailed description

Implementing an IEEE 1588 V2 on i.MX RT Using PTPd, FreeRTOS, and lwIP TCP/IP stack, Rev. 1, 09/2018

18 NXP Semiconductors

Even the code in the files in the ptpd/src folder is common to the PTPd application. Some files must be

updated for the PTPd to work on the FreeRTOS OS. The original main() function in the ptpd.c file is

changed to ptpd_thread(), which is created as a FreeRTOS OS task. The original command line

parameters are removed to simplify the demo functions, except for the variable to denote the master or

the slave. This variable’s value is passed by the parameter while the FreeRTOS OS task is being created.

Another significant modification in the PTPd common code is in the protocol.c file. The default PTPd

application runs as a real network node within a UNIX-style system. The device can receive the frames

of event messages sent by itself, because they are sent using UDP/IP multicast messages. The

Follow_Up or Pdelay_Resp_Follow_Up messages are sent after the device receives corresponding Sync

or Pdelay_Resp event messages sent by itself in the original protocol source code. Because this demo

runs with a point-to-point connection, the device does not receive the event message sent by itself. The

code must be modified to send these two follow-up messages as soon as the corresponding event

message is sent. As a result of this change, the netSelect() function must be called with a specific

timeout value to replace the original NULL (no timeout) that blocks the select() function waiting for a

file descriptor indefinitely.

The files in the ptpd/src/dep folder are port-specific source code files and depend on the operating

system, TCP/IP stack, and hardware platform. The main changes involve the net.c, startup.c, sys.c, and

timer.c files. Their names are suffixed by _mcu to distinguish them from the original files.

FreeRTOS OS provides software timer functionality when setting configUSE_TIMERS to 1 in the

FreeRTOSConfig.h file. The modification of the timer_mcu.c file includes these two functions:

void catch_alarm(TimerHandle_t xTimer)

{

 (void)xTimer;

 elapsed++; /* be sure to NOT call DBG in asynchronous handlers! */

}

void initTimer(void)

{

 TimerHandle_t xptpTimer;

 xptpTimer = xTimerCreate("ptp_timer", pdMS_TO_TICKS(MS_TIMER_INTERVAL), pdTRUE, NULL,

catch_alarm);

 if(xptpTimer != NULL)

 {

 xTimerStart(xptpTimer, portMAX_DELAY);

 }

}

The sys_mcu.c file has some time-related routines to provide interfaces to the low-level hardware timer

that is synchronized in the demo. Most of these routines call the functions described in Section 5.2,

“lwIP TCP/IP porting update”.

IEEE1588 demo software detailed description

Implementing an IEEE 1588 V2 on i.MX RT Using PTPd, FreeRTOS, and lwIP TCP/IP stack, Rev. 1, 09/2018

NXP Semiconductors 19

The adjFreq() function code is as follows:

Boolean adjFreq(Integer32 adj)

{

 if (adj > ADJ_FREQ_MAX)

 adj = ADJ_FREQ_MAX;

 else if (adj < -ADJ_FREQ_MAX)

 adj = -ADJ_FREQ_MAX;

 ethernet_ptptime_adjfreq(adj);

 return TRUE;

}

There are two sleep functions to put the current thread into a dormant state that are implemented using

the FreeRTOS vTaskDelay() function. The remaining changes just remove the code for the information

output and/or the log file.

Boolean nanoSleep(TimeInternal * t)

{

 TickType_t time;

 time = pdMS_TO_TICKS(t->seconds * 1000 + t->nanoseconds / 1000000);

 vTaskDelay(time);

 return TRUE;

}

void milliSleep(int milli_seconds)

{

 TickType_t time;

 time = pdMS_TO_TICKS(milli_seconds);

 vTaskDelay(time);

}

The startup_mcu.c file removes all OS-related signal functions and the command line parameter-parsing

code. The ptpd_init() function is added to create a FreeRTOS OS task for the PTPd application.

The timestamp of the transmit frame in the original code is provided by the OS and the timestamp of the

received frame can be extracted from the received data after calling the recvmsg() function which is

supported by a Linux-style OS. This demo uses the hardware timestamping feature in the ENET 1588

timer. These codes must be ported to the FreeRTOS OS and the ENET 1588 timer on the i.MX RT10xx

MCUs. The code in the net_mcu.c file provides the ported functions.

IEEE1588 demo software detailed description

Implementing an IEEE 1588 V2 on i.MX RT Using PTPd, FreeRTOS, and lwIP TCP/IP stack, Rev. 1, 09/2018

20 NXP Semiconductors

The findIface() function directly returns the default network interface used in lwIP and implemented as

follows:

#define netGetDefaultNetif() (netif_default)

UInteger32 findIface(Octet * ifaceName, UInteger8 * communicationTechnology,

 Octet * uuid, NetPath * netPath)

{

 struct netif * iface;

 (void) communicationTechnology;

 (void) netPath;

 iface = netGetDefaultNetif();

 memcpy(uuid, iface->hwaddr, iface->hwaddr_len);

 memcpy(ifaceName, iface->name, sizeof (iface->name));

 return iface->ip_addr.addr;

}

Because the ported code does not use the recvmsg() function to enable timestamps, the

netInitTimestamping() function is not called in the netInit() function nor implemented as a dump

function just returning TRUE.

The ENET driver on the i.MX RT10xx MCU provides two APIs to query the timestamp of the event

message’s frame that is transmitted or received at the time. To get the timestamp, the ENET PTP

message data and the timestamp data defined by the enet_ptp_time_data_t type shall be packed from the

buffer that contains the received or sent event messages. The netPackPtpData() function is added for

this task and listed explicitly in this code:

static void netPackPtpData(Octet * buf, enet_ptp_time_data_t *pptpTimeData)

{

 pptpTimeData->messageType = (*(Enumeration4 *) (buf + 0)) & 0x0F;

 pptpTimeData->sequenceId = flip16(*(UInteger16 *) (buf + 30));

 pptpTimeData->version = (*(UInteger4 *) (buf + 1)) & 0x0F;

 memcpy(pptpTimeData->sourcePortId, (buf + 20), 10);

}

The recv() socket function replaces the recvmsg() function in the netRecvGeneral() function to read the

general message’s frame. This is the code of the netRecvGeneral() function implementation:

ssize_t netRecvGeneral(Octet * buf, TimeInternal * time, NetPath * netPath)

{

ssize_t ret;

 ret = recv(netPath->generalSock, buf, PACKET_SIZE, MSG_DONTWAIT);

 if (ret <= 0) {

 if (errno == EAGAIN || errno == EINTR)

 return 0;

 return ret;

 }

return ret;

}

IEEE1588 demo software detailed description

Implementing an IEEE 1588 V2 on i.MX RT Using PTPd, FreeRTOS, and lwIP TCP/IP stack, Rev. 1, 09/2018

NXP Semiconductors 21

The netRecvEvent() function reads the event message’s frame and returns its timestamp provided by the

low-level ENET driver. This is the code of its implementation:

ssize_t netRecvEvent(Octet * buf, TimeInternal * time, NetPath * netPath)

{

 ssize_t ret;

 enet_ptp_time_data_t ptpTimeData;

 getTime(time); /* Current time for timestame in case of reading from driver failed. */

 ret = recv(netPath->eventSock, buf, PACKET_SIZE, MSG_DONTWAIT);

 if (ret <= 0) {

 if (errno == EAGAIN || errno == EINTR)

 return 0;

 return ret;

 }

 if (!time) {

 ERROR("null receive time stamp argument\n");

 return 0;

 }

 netPackPtpData(buf, &ptpTimeData);

 if(!enet_get_rxframe_time(&ptpTimeData)){

 time->nanoseconds = ptpTimeData.timeStamp.nanosecond;

 time->seconds = (Integer32)ptpTimeData.timeStamp.second;

 }

return ret;

}

Both the netSentEvent() and netSentPeerEvent() functions send the frame of a corresponding event

message and return the frame’s timestamp. The default implementation does not support hardware

timestamping. To enable hardware timestamping, the netSentEvent() and netSentPeerEvent() functions

add another input parameter of the pointer to the buffer that contains the returned timestamp.

IEEE1588 demo software detailed description

Implementing an IEEE 1588 V2 on i.MX RT Using PTPd, FreeRTOS, and lwIP TCP/IP stack, Rev. 1, 09/2018

22 NXP Semiconductors

This code snippet shows the code added into the netSentEvent() and netSentPeerEvent() functions in red:

ssize_t netSendEvent(Octet * buf, UInteger16 length, TimeInternal * time, NetPath * netPath,

Integer32 alt_dst)

{

……

enet_ptp_time_data_t ptpTimeData;

……

getTime(time); /* Current time for timestame in case of reading from driver failed. */

netPackPtpData(buf, &ptpTimeData);

if(!enet_get_txframe_time(&ptpTimeData)){

 time->nanoseconds = ptpTimeData.timeStamp.nanosecond;

 time->seconds = (Integer32)ptpTimeData.timeStamp.second;

} else {

 /* suspend process 1 millisecond to make sure current frame was sent by enet */

 milliSleep(1);

 /* Try to read timestamp again */

 if(!enet_get_txframe_time(&ptpTimeData)){

 /* return the timestamp gotten from driver */

 time->nanoseconds = ptpTimeData.timeStamp.nanosecond;

 time->seconds = (Integer32)ptpTimeData.timeStamp.second;

 }

}

return ret;

}

5.4. FreeRTOS OS tasks and board configuration

There are three task threads created using the FreeRTOS OS in the demo application:

• stack_init task—created in the main function. This task initializes the lwIP TCP/IP stack as well

as the static IP address setting, netmask configuration, gateway address configuration, MAC

address configuration, and Ethernet hardware initialization. Then it starts the PTPd task. Lastly,

the task deletes itself by calling the vTaskDelete() function after initialing the lwIP and PTPd

tasks.

• tcpip_thread task—created by the stack_init task during the TCP/IP initialization. This task runs

the main lwIP task to access the lwIP core functions.

• ptpd_thread task—created by the stack_init task. This task runs the PTPd application. The

parameter passed while this task is being created denotes either the master or the slave.

The demo enables the 1588 timer’s one-channel output compare function. Its output signal is asserted

according to the configuration while the output compare event happens. The 1588 timer’s channel 3 is

used to generate an output compare event in this demo for the i.MX RT1050 and i.MX RT1060 MCUs.

The output signal is routed to the GPIO_AD_B1_02 pin. The following syntax configures

GPIO_AD_B1_02 as ENET_1588_EVNT2_OUT (output signal of channel 3) in the pin_mux.c file:

Running the IEEE1588 demo

Implementing an IEEE 1588 V2 on i.MX RT Using PTPd, FreeRTOS, and lwIP TCP/IP stack, Rev. 1, 09/2018

NXP Semiconductors 23

/* GPIO_AD_B1_02 is configured as 1588_EVENT2_OUT */

IOMUXC_SetPinMux(IOMUXC_GPIO_AD_B1_02_ENET_1588_EVENT2_OUT, 0U);

/* GPIO_AD_B0_12 PAD functional properties */

IOMUXC_SetPinConfig(IOMUXC_GPIO_AD_B1_02_ENET_1588_EVENT2_OUT, 0x10B0u);

The 1588 timer’s channel 2 is used to generate an output compare event in this demo for the

i.MX RT1020 MCU. The output signal is routed to the GPIO_SD_B1_02 pin. This syntax configures

GPIO_SD_B1_02 as ENET_1588_EVNT1_OUT (output signal of channel 2) in the pin_mux.c file:

/* GPIO_SD_B1_02 is configured as 1588_EVENT1_OUT */

IOMUXC_SetPinMux(IOMUXC_GPIO_SD_B1_02_ENET_1588_EVENT1_OUT, 0U);

/* GPIO_SD_B0_12 PAD functional properties */

IOMUXC_SetPinConfig(IOMUXC_GPIO_SD_B1_02_ENET_1588_EVENT1_OUT, 0x10B0u);

The 1588 timer is clocked from ref_enetpll2 (generated by the Ethernet PLL) which must be enabled.

The Ethernet PLL is initialized as follows:

void BOARD_InitModuleClock(void)

{

 const clock_enet_pll_config_t config = {true, true, 1, 0};

 CLOCK_InitEnetPll(&config);

}

The other board-specific initialization code is the same as the enet_rxtx_ptp1588 example in the

<sdk_install_dir>/boards/evkmimxrt1050/driver_examples/enet/txrx_ptp1588_transfer folder.

6. Running the IEEE1588 demo

This section describes how to set up the 1588 demo using the i.MX RT10xx EVK board and the demo

software described in the above sections.

6.1. Hardware setup

Two i.MX RT10xx EVK boards must be used and connected to each other to set up the hardware for the

test. The demo has a point-to-point configuration where two boards are connected directly using the

crossover Ethernet cable. This demo uses a simple type of connection often used to evaluate the

system’s accuracy and overall performance. The point-to-point configuration using two i.MX RT10xx

EVK boards is shown in Figure 9. There are no specific jumper settings needed for the test.

Figure 9. Back-to-back configuration of the demo

Running the IEEE1588 demo

Implementing an IEEE 1588 V2 on i.MX RT Using PTPd, FreeRTOS, and lwIP TCP/IP stack, Rev. 1, 09/2018

24 NXP Semiconductors

For detailed information on how to use the i.MX RT10xx EVK board and set its jumpers, see the

MIMXRT10xx EVK Board Hardware User’s Guide.

6.2. Clock synchronicity measuring

This demo can generate a Pulse-Per-Second (PPS) signal to measure the synchronicity of the clocks

between the master and the slave. As for the i.MX RT1050 and i.MX RT1060 MCUs, the PPS signal is

generated directly from the 1588 timer’s channel 3 and configured to output through the

GPIO_AD_B1_02 pin. This GPIO signal is routed to the J22-7 pin of the Arduino interface. For the

i.MX RT1020 MCU, the PPS signal is generated directly from the 1588 timer’s channel 2 and

configured to output through the GPIO_SD_B1_02 pin. This GPIO signal is routed to the J19-10 pin of

the Arduino interface.

To measure and compare the PPS signals from two boards, attach two oscilloscope probes to the J22-7

pins on the i.MX RT1050 and/or i.MX RT1060 EVK boards respectively, and/or to the J19-10 pin on

the i.MX RT1020 EVK board. The two boards are powered for a time interval in the test. The

oscilloscope shows that the slave PPS signal moves closer and closer to the master PPS signal and the

offset converges to vary between a range of four clock cycles of the 1588 timer.

Master PPSSlave PPS

Figure 10. PTP startup—PPS distance between master and slave

Running the IEEE1588 demo

Implementing an IEEE 1588 V2 on i.MX RT Using PTPd, FreeRTOS, and lwIP TCP/IP stack, Rev. 1, 09/2018

NXP Semiconductors 25

Figure 11. PTP synchronizing—slave PPS moving closer to master PPS

Conclusion

Implementing an IEEE 1588 V2 on i.MX RT Using PTPd, FreeRTOS, and lwIP TCP/IP stack, Rev. 1, 09/2018

26 NXP Semiconductors

Figure 12. PTP synchronized—converged PPS distance between master and slave

7. Conclusion

This application note describes the IEEE 1588 Precision Time Protocol demo application based on the

open-source PTP daemon, FreeRTOS OS, lwIP TCP/IP stack, SDK for i.MX RT10xx, and the

i.MX RT10xx Evaluation Kit (EVK-MIMXRT1050) board. This demo can be easily ported to other

processors from the i.MX RT series with the FreeRTOS OS, lwIP, and TCP/IP stack support.

The demo system is targeted for applications that require precise clock synchronization between devices

with accuracy in the sub-microsecond range.

Revision history

Implementing an IEEE 1588 V2 on i.MX RT Using PTPd, FreeRTOS, and lwIP TCP/IP stack, Rev. 1, 09/2018

NXP Semiconductors 27

8. Acronyms and abbreviations
Table 1. Acronyms

Term Meaning

API Application Program Interface

BMC Best Master Clock

DHCP Dynamic Host Control Protocol

DNS Domain Name System

ENET 10/100-Mbit/s Ethernet MAC

GPIO General Port Input Output

ICMP Internet Control Message Protocol

IGMP Internet Group Management Protocol

MAC Media Access Control

PPS Pulse-Per-Second

PTP Precision Time Protocol

PTPd PTP daemon

RTOS Real-Time Operation System

SDK Software Development Kit

TCP Transmission Control Protocol

UDP User Datagram Protocol

9. Revision history

Table 2 summarizes the changes done to this document since the initial release.

Table 2. Revision history

Revision number Date Substantive changes

0 03/2018 Initial release

1 09/2018

Updated the code to SDK2.4.x.; Added

support for RT1050, RT1060, and

RT1020.

Document Number: AN12149
Rev. 1

09/2018

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software

implementers to use NXP products. There are no express or implied copyright licenses

granted hereunder to design or fabricate any integrated circuits based on the

information in this document. NXP reserves the right to make changes without further

notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its

products for any particular purpose, nor does NXP assume any liability arising out of

the application or use of any product or circuit, and specifically disclaims any and all

liability, including without limitation consequential or incidental damages. “Typical”

parameters that may be provided in NXP data sheets and/or specifications can and do

vary in different applications, and actual performance may vary over time. All operating

parameters, including “typicals,” must be validated for each customer application by

customer’s technical experts. NXP does not convey any license under its patent rights

nor the rights of others. NXP sells products pursuant to standard terms and conditions

of sale, which can be found at the following address:

www.nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to

unidentified vulnerabilities. Customers are responsible for the design and operation of

their applications and products to reduce the effect of these vulnerabilities on

customer’s applications and products, and NXP accepts no liability for any vulnerability

that is discovered. Customers should implement appropriate design and operating

safeguards to minimize the risks associated with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,

COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES,

MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,

MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK,

SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the

Freescale logo, AltiVec, C 5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C Ware,

the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,

PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the

SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack,

CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names

are the property of their respective owners. Arm, AMBA, Arm Powered, Artisan, Cortex,

Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are registered trademarks of

Arm Limited (or its subsidiaries) in the EU and/or elsewhere. Arm7, Arm9, Arm11,

big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, Mbed, NEON, POP, Sensinode,

Socrates, ULINK and Versatile are trademarks of Arm Limited (or its subsidiaries) in the

EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of

Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the

Power and Power.org logos and related marks are trademarks and service marks

licensed by Power.org.

© 2018 NXP B.V.

http://www.nxp.com/
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Implementing an IEEE 1588 V2 on i.MX RT Using PTPd, FreeRTOS, and lwIP TCP/IP stack
	1. Introduction
	2. IEEE 1588 basic overview
	2.1. Synchronization principle
	2.2. Timestamping

	3. IEEE 1588 functions on i.MX RT
	3.1. Adjustable timer module
	3.2. Transmit timestamping
	3.3. Receive timestamping
	3.4. Time synchronization
	3.5. Input capture and output compare block

	4. IEEE 1588 implementation for i.MX RT
	4.1. Hardware components
	4.2. Software components
	4.2.1. FreeRTOS OS
	4.2.2. lwIP TCP/IP stack
	4.2.3. PTP daemon

	5. IEEE1588 demo software detailed description
	5.1. i.MXRT SDK IDE ENET driver update
	5.2. lwIP TCP/IP porting update
	5.3. PTPd porting on FreeRTOS OS
	5.4. FreeRTOS OS tasks and board configuration

	6. Running the IEEE1588 demo
	6.1. Hardware setup
	6.2. Clock synchronicity measuring

	7. Conclusion
	8. Acronyms and abbreviations
	9. Revision history

