

 AN12125
Using LPC802 as I2C-bus EEPROM
Rev.1.0 20 February 2018 Application note

Document information
Info Content
Keywords Flash, EEPROM, IAP, I2C-bus, LPC802
Abstract This application note introduces how to use LPC802 as EEPROM via I2C-

bus interface.

NXP Semiconductors AN12125
 Using LPC802 as I2C- bus EEPROM

AN12125 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors B.V. 2018. All rights reserved.

Application note Rev.1.0 — 20 February 2018 2 of 16

Contact information
For more information, please visit: http://www.nxp.com

Revision history
Rev Date Description
1.0 20180220 Initial version

http://www.nxp.com/

NXP Semiconductors AN12125
 Using LPC802 as I2C- bus EEPROM

AN12125 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors B.V. 2018. All rights reserved.

Application note Rev.1.0 — 20 February 2018 3 of 16

1. Overview
LPC802 is a new member of the LPC800 series, which satisfies the demand for
improved power efficiency. It is an ideal product for migration of market from 8-bit
architecture with a very low cost. LPC802 has up to 15 MHz Cortex-M0 + core with 16 kB
flash and 2 kB RAM. It is suitable for I/O expander and small programmable logic unit.
This application note discusses about LPC802 as an EEPROM like device. As LPC802
internal flash can endure at least 200k R/W cycles, it is ideal to use internal flash of
LPC802 as non-volatile memory for EEPROM. With a dedicated firmware, LPC802 can
transform into smart EEPROM with selectable interface such as, UART or SPI.

This application note uses the I2C-bus interface of LPC802 and on-chip flash memory to
simulate traditional I2C-bus EEPROM devices. It has the following information:

• General description, memory resources and layout, available peripherals

• Usage of flash IAP with example code

• Usage of I2C-bus module, especially for I2C-bus slave mode
 Note: A basic knowledge of the I2C-bus is required. For the I2C-bus specification, see
 http://www.i2c-bus.org/specification/

2. Hardware

2.1 MCU overview
The LPC802 are ARM® Cortex®-M0+ based, low-cost 32-bit MCU family operating at
CPU frequencies up to 15 MHz. The LPC802 supports 16 kB flash memory and
2 kB SRAM, offering TSSOP16, TSSOP20, HVQFN33 and WLCSP16 package. In
addition, the dual power supply parts provide level shifter function, which reduces the
corresponding external components and the total system BOM cost.
The peripherals of the LPC802 include:

• One I2C-bus interface

• Up to two USARTs

• One SPI interface

• One multi-rate timer, self-wake-up timer, one general purpose 32-bit counter/timer

• One 12-bit ADC, one analog comparator

• Function-configurable I/O ports through a switch matrix, and up to 17 general-purpose
I/O pins. Three I/O pins have high driver capability providing up to 20 mA source
current

2.1.1 Flash features
The on-chip flash (total 16 kB) of LPC802 contains 16 sectors. The size of each sector is
1 kB and contains 16 pages. The size of each page is 64 bytes. The IAP command
supports:

• Page erase

• Page writes

• Sector erase

NXP Semiconductors AN12125
 Using LPC802 as I2C- bus EEPROM

AN12125 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors B.V. 2018. All rights reserved.

Application note Rev.1.0 — 20 February 2018 4 of 16

 See Table 1.for flash partition and configuration

Table 1. Flash partition and configuration

Following is the IAP flash command executing time (tested on : MDK,V5.06 O3):

• Sector erase: 19.921 ms

• Page erase: 1.466 ms

• Page write: 1.526 ms

2.1.2 I2C-bus features
In this application note, LPC802 has one I2C-bus interface which is used in slave mode.
The I2C-bus interface has the following features:
• Independent master, slave, and monitor functions

• Supports both multi-master and multi-master with slave functions

• Multiple I2C-bus slave addresses supported in hardware

• One slave address can be selectively qualified with a bit mask or an address range in

In this application, I2C0 is configured in slave mode and used as a communication
interface for EEPROM device.

2.2 Hardware connection
The hardware connection is simple, with only two pins used.

• I2C_SDA: P0_10

• I2C_SCL: P0_16
The I2C-bus requires two 4.7 kΩ pull-up resistors for SDA and SCL lines.

Virtual
Sector
number

Virtual
Sector
Size
(KB)

Page
number

Address Range 16KB
flash

32KB
flash

0 1 0 - 15 0 × 0000 0000 - 0 × 0000 03FF yes yes
1 1 16 - 31 0 × 0000 0400 - 0 × 0000 07FF yes yes
2 1 32 - 47 0 × 0000 0800 - 0 × 0000 0BFF yes yes
3 1 48 - 63 0 × 0000 0C00 - 0 × 0000 0FFF yes yes
4 1 64 - 79 0 × 0000 1000 - 0 × 0000 13FF yes yes
5 1 80 - 95 0 × 0000 1400 - 0 × 0000 17FF yes yes
6 1 96 - 111 0 × 0000 1800 - 0 × 0000 1BFF yes yes
7 1 112 - 127 0 × 0000 1C00 - 0 × 0000 1FFF yes yes
8 1 128 - 143 0 × 0000 2000 - 0 × 0000 23FF yes yes
9 1 144 - 159 0 × 0000 2400 - 0 × 0000 27FF yes yes
10 1 160 - 175 0 × 0000 2800 - 0 × 0000 2BFF yes yes
11 1 176 -191 0 × 0000 2C00 - 0 × 0000 2FFF yes yes
12 1 192 - 207 0 × 0000 3000 - 0 × 0000 33FF yes yes
13 1 208 - 223 0 × 0000 3400 - 0 × 0000 37FF yes yes
14 1 224 - 239 0 × 0000 3800 - 0 × 0000 3BFF yes yes
15 1 240 - 255 0 × 0000 3C00 - 0 × 0000 3FFF yes yes

NXP Semiconductors AN12125
 Using LPC802 as I2C- bus EEPROM

AN12125 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors B.V. 2018. All rights reserved.

Application note Rev.1.0 — 20 February 2018 5 of 16

3. Software

3.1 IAP (In Application Programing)
This section gives an example of how to use the flash IAP function of LPC802.

1. Call the IAP routine with a word pointer in register r0, pointing to memory (RAM)
containing command code and parameters.

2. Define a IAP_Call function pointer in the address 0x0F001FF1.

3. Use IAP_Call to setup IAP function and organize those function calls into higher
level APIs.

For detailed information about IAP command, see Chapter 4: LPC802 ISP and IAP in the
LPC802 user manual.

Note that when calling IAPs the flash might be disabled temporarily. The simplest work-
around is to disable interrupts when executing flash IAP calls.

Declare IAP calls:

1 /* IAP Call */
2 struct sIAP
3 { // IAP Structure
4 unsigned long cmd; // Command
5 unsigned long par[4]; // Parameters
6 unsigned long stat; // Status
7 unsigned long res[2]; // Result
8 } IAP;
9 typedef void (*IAP_Entry) (unsigned long *cmd, unsigned long *stat);
10 #define IAP_Call ((IAP_Entry) 0x0F001FF1)
11 #define PAGE_SIZE (64)
12 #define CCLK (15000)

Erase page function:

13 uint8_t FLASH_ErasePage(uint32_t addr)
14 {
15 unsigned long n;
16 unsigned long page;
17
18 n = GetSecNum(addr); // Get Sector Number
19
20 IAP.cmd = 50; // Prepare Sector for

Erase
21 IAP.par[0] = n; // Start Sector
22 IAP.par[1] = n; // End Sector
23 __disable_irq();
24 IAP_Call (&IAP.cmd, &IAP.stat); // Call IAP Command
25 __enable_irq();
26 if (IAP.stat) return (1); // Command Failed
27
28 page = addr/PAGE_SIZE;

NXP Semiconductors AN12125
 Using LPC802 as I2C- bus EEPROM

AN12125 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors B.V. 2018. All rights reserved.

Application note Rev.1.0 — 20 February 2018 6 of 16

29
30 IAP.cmd = 59;
31 IAP.par[0] = page;
32 IAP.par[1] = page;
33 IAP.par[2] = CCLK;
34 __disable_irq();
35 IAP_Call (&IAP.cmd, &IAP.stat);
36 __enable_irq();
37 if (IAP.stat) return (1);
38
39 return (0);
40 }
41

Write Page function:

42 uint8_t FLASH_WritePage(uint32_t addr, const uint8_t *buf)
43 {
44 unsigned long n;
45
46 n = GetSecNum(addr); // Get Sector Number
47 IAP.cmd = 50; // Prepare Sector for

Write
48 IAP.par[0] = n; // Start Sector
49 IAP.par[1] = n; // End Sector
50 __disable_irq();
51 IAP_Call (&IAP.cmd, &IAP.stat); // Call IAP Command
52 __enable_irq();
53 if (IAP.stat) return (1); // Command Failed
54
55 IAP.cmd = 51; // Copy RAM to Flash
56 IAP.par[0] = addr; // Destination Flash

Address
57 IAP.par[1] = (unsigned long)buf; // Source RAM Address
58 IAP.par[2] = PAGE_SIZE; // Fixed Page Size
59 IAP.par[3] = CCLK; // CCLK in kHz
60 __disable_irq();
61 IAP_Call (&IAP.cmd, &IAP.stat); // Call IAP Command
62 __enable_irq();
63 if (IAP.stat) return (1); // Command Failed
64
65 return 0;
66 }

3.2 I2C-bus interface programming
In this application, I2C-bus is configured as slave function. To use I2C-bus module,
correct initialization steps must be performed before using it. It includes clock gate
control, clock routing, pin MUX, etc. The following code snippet shows initializing the I2C-
bus and enabling the I2C-bus interrupt:

NXP Semiconductors AN12125
 Using LPC802 as I2C- bus EEPROM

AN12125 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors B.V. 2018. All rights reserved.

Application note Rev.1.0 — 20 February 2018 7 of 16

67 void app_i2c_slave_init(uint8_t slv_addr)
68 {
69 /* pin mux */
70 ConfigSWM(I2C0_SDA, P0_10);
71 ConfigSWM(I2C0_SCL, P0_16);
72
73 /* using main clock */
74 LPC_SYSCON->I2C0CLKSEL = 1;
75
76 /* give I2C a reset */
77 LPC_SYSCON->PRESETCTRL[0] &= (I2C0_RST_N);
78 LPC_SYSCON->PRESETCTRL[0] |= ~(I2C0_RST_N);
79
80 LPC_I2C0->DIV = 2;
81 LPC_I2C0->CFG = CFG_MSTENA | CFG_SLVENA;
82
83 LPC_I2C0->SLVADR0 = (slv_addr << 1) | 0;
84
85 // Enable the I2C0 slave pending interrupt
86 LPC_I2C0->INTENSET = STAT_SLVPEND | STAT_SLVDESEL;
87 NVIC_EnableIRQ(I2C0_IRQn);
88 }

I2C-bus slave operation is done by software interrupt handling. Two major I2C-bus
interrupt sources are used:

• SLVPENDING: Indicates that the slave function is waiting to continue communication
on the I2C-bus and needs software service

• SLVDESEL: A stop condition occurred or the new address on bus does not match the
current slave address

In I2C-bus interrupt, the software should check the interrupt state register. When a STOP
condition occurs, SLVDESEL is generated. Software posts a message to main thread to
process more operations such as, writing the received data into NVM. When
SLVPENDING is generated, software should check the state code in SLVSTATE filed in
I2C0->STAT register to determine the next operation.

• SLVSTATE = 0x00 (slave address received and matched)

Software should record address by reading SLVDATA and interpret whether it is a
reading or a writing operation

• SLVSTATE = 0x01 (slave received a new byte)

Software should read SLVDATA to get transferred data and store in RAM. Then set
CTL_SLVCONTINUE bit in SLVCTRL register, to let I2C-bus hardware continue
processing bus transition

• SLVSTATE = 0x02 (slave need transmit a new byte to master)

Software should feed data into SLVDATA, then set CTL_SLVCONTINUE bit in SLVCTRL
register, to let I2C-bus hardware continue processing bus transition

NXP Semiconductors AN12125
 Using LPC802 as I2C- bus EEPROM

AN12125 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors B.V. 2018. All rights reserved.

Application note Rev.1.0 — 20 February 2018 8 of 16

3.3 Communication protocol
R/W timing is similar to other EEPROM devices in the market, but only supports
sequential R/W.

 Following shows the detailed communication protocol:
• Sequential write

For write operation, two bytes of address are required after the slave write address is
sent out. These two bytes select one out of the 65535 bytes of locations in the
memory, with lower byte transferred first.

The format is:
CHIP_ADDR (7 bits + W (1)) + DATA_ADDR_L + DATA_ADDR_H + DATA (0) +… +
DATA(N)

Fig 1. Sequential write timing

• Sequential read
Sequential read operation is similar to the write operation, but, requires an I2C-bus
restart signal with slave read address. The master now responds with an acknowledge,
indicating that it requires additional data. The device continues to output data for each
acknowledge received.

 The format is:

CHIP_ADDR (7 bits + W (0)) +DATA_ADDR_L + DATA_ADDR_H + CHIP_ADDR (7
bits + R (1)) + DATA(0) +… +DATA(N)

Fig 2. Sequential read timing

NXP Semiconductors AN12125
 Using LPC802 as I2C- bus EEPROM

AN12125 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors B.V. 2018. All rights reserved.

Application note Rev.1.0 — 20 February 2018 9 of 16

For sequential write, on receiving each data byte, the two-byte address is internally
incremented. When the address reaches the page boundary, the following byte will be
discarded. So, the maximum data length of write operation is page length (64 byte).

3.4 Summary
The demo uses flash address from 0X1000 to 0X4000 on LPC802 as EEPROM memory.
The first 4 kB of flash is reserved to firmware itself. So, a total of 12 kB flash can be used
as EEPROM memory.

For slave address, 0X50 is chosen for compatibility with current EEPROMs on markets.

For software workflow, a standard foreground and background system is used. Only I2C-
bus interrupt is enabled. Software waits for I2C-bus transition and once I2C-bus interrupt
is generated, software handles the top-half process and pushes message to main thread
for bottom-half task. The main thread handles the task such as writing data into flash.
Figure 3 shows software workflow:

Fig 3. Diagram for software workflow

4. Test and result

4.1 Environment setup
In this section a test environment is built using LPC845 as master to read/write LPC802
through predefined I2C-bus interface. See Section 3.2.

Figure 4 shows the test environment block diagram.

NXP Semiconductors AN12125
 Using LPC802 as I2C- bus EEPROM

AN12125 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors B.V. 2018. All rights reserved.

Application note Rev.1.0 — 20 February 2018 10 of 16

Fig 4. Test environment block diagram

4.2 Hardware and connection:
 Master: LPC845 XpressoMAX board

 I2C _SDA: P0_11

 I2C _SCL: P0_10

 Slave: LPC802 demo board

 I2C _SDA: P0_10

 I2C _SCL: P0_16

Figure 5 shows the hardware connection.

Fig 5. Hardware connection

4.3 Test steps
 Prepare and connect hardware as described in the Section 4.2

 Download firmware to each board

 For master demo project (LPC845): compile project under
“lpc845_EEPROM_master.zip” and download image into LPC845 board, or
download the pre-compiled image under “/binary/
lpc845_EEPROM_master_demo.bin” into LPC845

NXP Semiconductors AN12125
 Using LPC802 as I2C- bus EEPROM

AN12125 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors B.V. 2018. All rights reserved.

Application note Rev.1.0 — 20 February 2018 11 of 16

 For slave firmware project (LPC802), compile project under
“lpc845_EEPROM_master” and download image into LPC845 board or
download the pre-compiled image under “/binary/
lpc802_EEPROM_frimware.bin” into LPC802

 Open serial terminal on LPC845 Xpresso board, set baud rate to 115200-N-8-N-1.
See Figure 6 for the output.

4.4 Test results
Test using external MCU to send test sequential R/W command. Note that ONLY
sequential R/W command is supported on current firmware. See Section 3.3
“Communication protocol”

Figure 7 and Figure 8 shows a typical read and write timing:

 Four bytes sequential read operation timing:

Two bytes sequential write operation timing:

Fig 6. Test log

Fig 7. Sequential read timing

Fig 8. Sequential write timing

NXP Semiconductors AN12125
 Using LPC802 as I2C- bus EEPROM

AN12125 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors B.V. 2018. All rights reserved.

Application note Rev.1.0 — 20 February 2018 12 of 16

4.5 Performance
The test conditions are:
• Test platform: LPC845 Xpresso board
• LPC845 core clock: 30 MHz
• I2C-bus clock: 373 kHz
• LPC802 core clock: 15 MHz

The firmware project and optimization setting of host test project does not take much
effect on the performance. It is because, most of the time of R/W is spent on I2C-bus
transfer and flash erase/write operation.
 Write one page (64 byte)

 Time 6.074 ms
 This time is the sum of I2C-bus transfer time plus internal flash page

erase time of LPC802 and page write time. For flash erase and write
time, refer Section 2.1.1.

 The I2C-bus transfer time depends on I2C-bus clock speed and transfer
size. In this case, transfer of one-page requires 64 (data) + 1 (chip
address) + 2 (data address) = 67 bytes.

 Read one page (64 byte)

 Time: 2.504 ms
 This value is almost equal to I2C-bus transfer time because LPC802

takes few µs to fetch data from its internal flash and write it to I2C-bus.

5. Conclusion
This application note mainly discusses the following topics:

• LPC802 flash features: Includes flash partition, IAP usage and example code

• LPC802 I2C-bus features, slave mode, knowledge about how to write software to co-
work with I2C-bus module and how to handle I2C-bus transition

• A demo software using LPC802 as an I2C-bus EEPROM to demonstrate the above
two features

• A test demo based on LPC845 Xpresso board that acts as I2C-bus master to R/W
NVM of LPC802, also providing sources and project file.

It is valuable to upgrade this demo to make LPC802 a smarter EEPROM- like device,
such as adding UART/SPI interface, handling page boundary issue internally, and adding
I/O expander function.

NXP Semiconductors AN12125
 Using LPC802 as I2C- bus EEPROM

AN12125 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors B.V. 2018. All rights reserved.

Application note Rev.1.0 — 20 February 2018 13 of 16

6. Legal information

6.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

6.2 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the

customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Translations — A non-English (translated) version of a document is for
reference only. The English version shall prevail in case of any discrepancy
between the translated and English versions.

Evaluation products — This product is provided on an “as is” and “with all
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates
and their suppliers expressly disclaim all warranties, whether express,
implied or statutory, including but not limited to the implied warranties of non-
infringement, merchantability and fitness for a particular purpose. The entire
risk as to the quality, or arising out of the use or performance, of this product
remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be
liable to customer for any special, indirect, consequential, punitive or
incidental damages (including without limitation damages for loss of
business, business interruption, loss of use, loss of data or information, and
the like) arising out the use of or inability to use the product, whether or not
based on tort (including negligence), strict liability, breach of contract, breach
of warranty or any other theory, even if advised of the possibility of such
damages.

Notwithstanding any damages that customer might incur for any reason
whatsoever (including without limitation, all damages referenced above and
all direct or general damages), the entire liability of NXP Semiconductors, its
affiliates and their suppliers and customer’s exclusive remedy for all of the
foregoing shall be limited to actual damages incurred by customer based on
reasonable reliance up to the greater of the amount actually paid by
customer for the product or five dollars (US$5.00). The foregoing limitations,
exclusions and disclaimers shall apply to the maximum extent permitted by
applicable law, even if any remedy fails of its essential purpose.

6.3 Licenses
Purchase of NXP <xxx> components

<License statement text>

6.4 Patents
Notice is herewith given that the subject device uses one or more of the
following patents and that each of these patents may have corresponding
patents in other jurisdictions.

<Patent ID> — owned by <Company name>

6.5 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

<Name> — is a trademark of NXP Semiconductors N.V.

NXP Semiconductors AN12125
 Using LPC802 as I2C- bus EEPROM

AN12125 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors B.V. 2018. All rights reserved.

Application note Rev.1.0 — 20 February 2018 14 of 16

7. List of figures

Fig 1. Sequential write timing 8
Fig 2. Sequential read timing 8
Fig 3. Diagram for software workflow 9
Fig 4. Test environment block diagram 10
Fig 5. Hardware connection 10
Fig 6. Test log ... 11
Fig 7. Sequential read timing 11
Fig 8. Sequential write timing 11

NXP Semiconductors AN12125
 Using LPC802 as I2C- bus EEPROM

AN12125 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note Rev.1.0 — 20 February 2018 15 of 16

8. List of tables

Table 1. Flash partition and configuration 4

NXP Semiconductors AN12125
 Using LPC802 as I2C- bus EEPROM

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2018. All rights reserved.
For more information, visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 20 February 2018
Document identifier: AN12125

9. Contents

1. Overview .. 3
2. Hardware ... 3
2.1 MCU overview ... 3
2.1.1 Flash features .. 3
2.1.2 I2C-bus features ... 4
2.2 Hardware connection ... 4
3. Software .. 5
3.1 IAP (In Application Programing) 5
3.2 I2C-bus interface programming 6
3.3 Communication protocol 8
3.4 Summary ... 9
4. Test and result .. 9
4.1 Environment setup ... 9
4.2 Hardware and connection:10
4.3 Test steps ...10
4.4 Test results ...11
4.5 Performance ...12
5. Conclusion ...12
6. Legal information ...13
6.1 Definitions ...13
6.2 Disclaimers ...13
6.3 Licenses ...13
6.4 Patents ...13
6.5 Trademarks ..13
7. List of figures ...14
8. List of tables ..15
9. Contents ...16

	1. Overview
	2. Hardware
	2.1 MCU overview
	2.1.1 Flash features
	2.1.2 I2C-bus features

	2.2 Hardware connection

	3. Software
	3.1 IAP (In Application Programing)
	3.2 I2C-bus interface programming
	3.3 Communication protocol
	3.4 Summary

	4. Test and result
	4.1 Environment setup
	4.2 Hardware and connection:
	4.3 Test steps
	4.4 Test results
	4.5 Performance

	5. Conclusion
	6. Legal information
	6.1 Definitions
	6.2 Disclaimers
	6.3 Licenses
	6.4 Patents
	6.5 Trademarks

	7. List of figures
	8. List of tables
	9. Contents

