
1 Introduction
When developing USB audio devices, one must consider audio
synchronization. Three synchronization mechanisms for audio transmission
are defined in the USB specification, listed in Table 1.

Table 1. Synchronization characteristics of USB audio device

Source Sink

Asynchronous Free running Fs.

Provides implicit
feedforward
(data stream).

Free running Fs.

Provides explicit
feedback
(isochronous pipe).

Synchronous Fs locked to SOF.

Uses implicit
feedback (SOF).

Fs locked to SOF.

Uses implicit
feedback (SOF).

Adaptive Fs locked to sink.

Uses explicit feedback
(isochronous pipe).

Fs locked to data flow.

Uses implicit
feedforward
(data stream).

Both Source and Sink in Table 1 are USB devices. Source is the device that generates audio data and sends it to the USB
host, such as a USB microphone. Sink is the device that receives audio data from the USB host, such as a USB speaker. This
application note describes synchronization in the USB speaker device. Therefore, all the USB devices below are Sink devices,
unless otherwise specified.

The principles of the three synchronization mechanisms are:

• Asynchronous mode

When the USB endpoint is working in an asynchronous mode, the USB device is not synchronized with the USB host's Start of
Frame (SOF) signal. However, an additional feedback endpoint provides the true transmission rate of the device to the USB
Host. The host then adjusts its transmission rate according to the feedback value.

• Synchronous mode

When the USB endpoint is working in a synchronous mode, the transmission rate of the USB device must synchronize with
the SOF signal of the USB host. The transmission rate of the device is synchronized with the SOF signal by adjusting the clock
system of the device.

• Adaptive mode

When the USB endpoint is working in an adaptive mode, it can work at any rate within the operating range and not just on the
32 KHz, 44.1 KHz, and 48 KHz frequencies. For sink devices, the device must adjust to its own transmission rate and match
the data flow of the USB host.

Contents

1 Introduction......................................1
2 Implementation................................2
2.1 Required software and hardware

...2
2.2 System block diagram..................3
2.3 Enable USB audio synchronous

mode..4
2.4 KL27 clock distribution.................4
2.5 Codec configuration.....................5
2.6 Ring buffer management............. 5
2.7 Update the I2S transfer rate........ 9
3 Test... 10
4 Conclusion.....................................10
5 Reference......................................11
6 Revision history.............................11

AN13364
USB Audio Synchronous Mode on KL27
Rev. 0 — 26 August 2021 Application Note

For details about the synchronization mechanism, see chapter 5.12 of the USB 2.0 specification.

In the USB audio speaker example within the NXP software development kit (SDK), the asynchronous mode is used to realize the
audio synchronization between the USB host and the device. The device provides the real transmission rate of the device to the
host through the feedback endpoint, such that the host can adjust the actual transmission rate.

To meet the requirement of some customers, some devices in the NXP SDK already support the synchronous mode. For example,
LPC54608 and RT600. The synchronous mode is implemented as follows:

• LPC54608

In the example of LPC54608 SDK USB audio speaker, the program adjusts the trim value of the FRO(Free Running Oscillator)
clock according to the margin of the ring buffer used to store audio data. Since the FRO clock is used as the input clock of the
PLL(Phase locked loop) module, the I2S_BCLK and I2S_WS generated by the PLL division is also updated synchronously.

• RT600

In the example of RT600 SDK USB audio speaker, the USB host SOF frame interval is measured in real time through
SCTimer, and the fractional frequency division coefficient of PLL is adjusted according to the SOF frame interval, thereby
adjusting the I2S_BCLK and I2S_WS.

Kinetis L (KL) series MCU is a Cortex®-M0+-based low-power and low-cost microcontroller with a USB device controller. Some
customers may prefer to use KL series microcontrollers as the USB audio speaker controllers, such as KL27. However, if
you want to make the USB audio speaker support PS4, which does not support asynchronous mode, the KL27 must work in
synchronous mode.

Different from LPC54608 and RT600, KL27 is a low-cost microcontroller without the PLL module and the fractional divider,
which makes KL27 unable to adjust I2S_BCLK and I2S_WS by adjusting PLL like LPC54608 and RT600. This application note
introduces an implementation method of the audio synchronization mode based on the KL series MCU. To match the transmission
rate of the USB host, you can adjust the integer divider of I2S_BCLK and the I2S word length to adjust the transmission rate of
the device.

2 Implementation
This section lists the steps to implement audio synchronous mode in USB audio speaker. Here, KL27 is used as an example.

2.1 Required software and hardware
• Hardware

The KL27 on FRDM-KL27 board is MKL27Z64VLH4 and this part does not have I2S peripherals. Additionally, there is no
Codec on this board. Therefore, the USB audio speaker example cannot run on this board. The NxH3670 SDK board is
an evaluation board based on the KL27 for evaluating wireless headset solution. There are MKL27Z256VMP4 and Codec
WM8904 on this board, so this board is selected as the hardware platform for testing. The board configuration is shown in
Figure 1. For more detailed about the board, please refer to document UM11150.

NXP Semiconductors
Implementation

USB Audio Synchronous Mode on KL27, Rev. 0, 26 August 2021
Application Note 2 / 12

https://www.usb.org/document-library/usb-20-specification
https://www.nxp.com.cn/docs/en/user-guide/UM11150.pdf

Figure 1. NxH3670 SDK board

• Software

The FRDM-KL27 SDK is for the MKL27Z64VLH4 part, and there is no I2S driver. Therefore, the USB audio example in the
FRDM-KL43 SDK is selected as the basic project.

2.2 System block diagram
The system block diagram of KL27 audio speaker is shown in Figure 2.

USB Host
(PC/PS4/Switch)

Ringbuffer

MKL27Z256VMP4USB

USB

I2S
Master

Codec
WM8904

I2S_SDO

I2S_SDI

I2S_WS

I2S_BCLK

I2S
Slave

2 channel,
48K/24bit

2 channel,
48K/25bit

Figure 2. System block diagram of KL27 audio speaker

NXP Semiconductors
Implementation

USB Audio Synchronous Mode on KL27, Rev. 0, 26 August 2021
Application Note 3 / 12

2.3 Enable USB audio synchronous mode
This example uses dev_composite_hid_audio_bm project in the KL43 SDK as the basic project. The codec driver and the audio
ring buffer-related code are added based on the selected project.

Figure 3. Add codec driver and ring buffer management code

In the original code, the USB audio device works in asynchronous mode. Therefore, the related USB descriptor is modified to make
it work in the synchronous mode. In this example, the USB_DEVICE_AUDIO_USE_SYNC_MODE macro is used to configure the
USB audio device to work in an asynchronous mode or a synchronous mode. Set the USB_DEVICE_AUDIO_USE_SYNC_MODE
macro to 1 to make KL27 work in synchronous mode. For specific configuration details, see the attached code.

2.4 KL27 clock distribution
Configure the I2S master clock (I2S_MCLK) as the 48 M system clock and then divide the I2S_MCLK to generate I2S_BCLK. The
format of USB audio device used in this example is a two-channel 48 K/24 bit data stream. If the I2S interface is configured as 48

NXP Semiconductors
Implementation

USB Audio Synchronous Mode on KL27, Rev. 0, 26 August 2021
Application Note 4 / 12

K/24 bit, the corresponding I2S_BCLK = 48 K * 24 * 2 = 2.034 M. However, you cannot get 2.034 M from 48 M I2S_MCLK integer
frequency division. Therefore, the I2S word length can be adjusted to 25 bit. Now, I2S_BCLK = 48 K * 25 * 2 = 2.4 M, I2S_MCLK
can be divided by 20 to get the required I2S_BCLK.

Table 2. KL27 clock distribution

Clock Clock source Frequency

System clock HIRC 48 M

Bus clock HIRC/2 24 M

USB functional clock HIRC 48 M

I2S_MCLK System clock 48 M

I2S_BCLK I2S_MCLK/20 2.4 M

2.5 Codec configuration
The codec on the NxH3670 SDK board is WM8904. The format of USB audio device is two-channel 48 K/24-bit data. Therefore,
the codec must be configured to the same data format in the I2S slave mode. The I2S_BCLK and I2S_WS signals are provided
by KL27. The master clock of codec is provided by an external 12.288 M crystal oscillator on the board.

Table 3. Digital audio interface data control

Register Address Bit Label Default Description

R25 (19 h)

Audio Interface 1

3:2 AIF_WL [1:0] 10 Digital audio interface word length

00 = 16 bits

01 = 20 bits

10 = 24 bits

11 = 32 bits

1:0 AIF_FMY [1:0] 10 Digital audio interface format

00 = Right justified

01 = Left justified

10 = I2S

11 = DSP

WM8904 is a 24-bit device. If the I2S word length of KL27 is configured to exceed 24-bit length, then WM8904
automatically ignores data that exceeds 24-bit length. Even if the word length of I2S master is configured to 25 bit,
it does not affect the actual playback effect of the codec.

 NOTE

2.6 Ring buffer management
This example uses ring buffer to store the audio data sent by the USB host and uses DMA to transfer the data in the ring buffer to
the I2S TX data register. The two interrupt service functions implement the management of ring buffer. The two interrupt service
functions are:

• USB0_IRQHandler

NXP Semiconductors
Implementation

USB Audio Synchronous Mode on KL27, Rev. 0, 26 August 2021
Application Note 5 / 12

• Audio_DMATxCallback

The ring buffer mechanism used in this example comes from NxH3670 SDK, using three ring buffers, namely
gs_Interfaces[0].buffer[4096], gs_Interfaces[1].buffer[4096], and s_audioService_BufferOut[4096]. The ring
buffer mechanism in the NxH3670 SDK supports the function of audio mixer. It can simultaneously output the audio data
in the two audio speaker interfaces of the game channel and the chat channel. The principle is to store the audio data
in the two audio interfaces of the game and the chat separately in the two ring buffers: gs_Interfaces[0].buffer and
gs_Interfaces[1].buffer. Copy the data in the two ring buffers to the s_audioService_BufferOut array in chronological order
and then use DMA to transfer the data in the s_audioService_BufferOut array to I2S TX data register. This enables human ear
to hear the mixed sound of the game and chat channels at the same time.

audioPlayPacket

Audio interface 0

Audio interface 1

gs_Interfaces[0].buffer

gs_Interfaces[1].buffer

s_audioService.BufferOut I2S TX Data register
DMA

Figure 4. Audio data stream

In this example, only one audio interface is implemented and the function of audio mixer is not used, that is, the audio data stream
only moves according to the direction of the green arrow of Figure 4.

2.6.1 Threshold setting of ring buffer
The length of the gs_Interfaces[0].buffer ring buffer used in this example is 4096, the threshold setting is shown in Figure 5.

Figure 5. Threshold setting of ring buffer

The normal range of the margin of the ring buffer is between 40 % (1638) and 60 % (2457) of the length. If the range exceeds,
the I2S transfer rate must be adjusted. If the margin exceeds 2457, the I2S transfer rate must be increased. If the margin is less
than 1638, the I2S transfer rate must be reduced.

2.6.2 USB interrupt service function
The processing of the audio stream in the USB interrupt service function is shown in Figure 6.

NXP Semiconductors
Implementation

USB Audio Synchronous Mode on KL27, Rev. 0, 26 August 2021
Application Note 6 / 12

USB0_IRQHandler()

USB_DeviceAudioCompositeCallback()

AUDIO_MIXER_WriteSamples

audio_ringbuffer_Write

Fill 24 bit data with 8 bit 0 to
expand to 32 bit data and write to

gs_Interfaces[0].buffer or
gs_Interfaces[1].buffer

Determine whether inInterface->isActive
is false and the ring buffer is half full?

END

audio_StartTx()

inInterface->isActive = true;
gs_ActiveCount++;

gs_ActiveCount == 1

Y

N

Y

N

Calculate the margin of the ring buffer,
determine whether I2S_BCLK needs to be

updated, and if necessary, update the values
of g_I2sBclkSwitchFlag and g_I2sFormatIndex.

USB_FeedbackCalculate()

Start Tx DMA transfer when the ring
buffer is half full for the first time

Figure 6. Audio stream processing flow in USB interrupt service function

NXP Semiconductors
Implementation

USB Audio Synchronous Mode on KL27, Rev. 0, 26 August 2021
Application Note 7 / 12

For a full-speed USB audio device, the USB host sends a packet of audio stream data every millisecond, and the packet size is
288 bytes (48 K*2*3). It can be seen from Figure 6 that in the USB interrupt service function, the USB_FeedbackCalculate
function is first called to calculate the margin of the ring buffer to determine whether I2S_BCLK should be updated. If I2S_BCLK
should be updated, update the values of the g_I2sBclkSwitchFlag and g_I2sFormatIndex variables.

Note that the value of I2S_WS is not updated immediately. It will be updated in the DMA interrupt service function after the current
DMA transfer completes. After executing the USB_FeedbackCalculate function, call the audio_ringbuffer_write function to
write the received audio data to gs_Interfaces[0].buffer ring buffer.

Before writing, the program firsts expand the 24-bit data to 32-bit data because the length of DMA transfer is 32 bit. Observe
whether the ring buffer is half full. If it is half full, call the audio_StartTx function to start DMA transfer. Under normal
circumstances, the margin of the ring buffer should be kept at about 50 % of the length. If you have strict requirements on the delay
of audio data, the length of ring buffer can be reduced to shorten the audio delay.

2.6.3 DMA interrupt service function
Configure the DMA transmission length to be 1 ms audio data stream size. DMA completes a transmission every millisecond and
triggers a DMA interrupt. The audio_DMATxCallback function is called in the DMA interrupt service function. The audio processing
flow in audio_DMATxCallback is shown in Figure 7.

audio_DMATxCallback

audio_SetI2sWS()

g_I2sBclkSwitchFlag== 1?

audio_GetAndTransmitSamples()

END

Copy the data in gs_Interfaces[x].buffer
to s_audioService_BufferOut ring buffer

Y

N

audio_ConfigureLinkTxDma() Start a new DMA transfer

Figure 7. Audio stream processing flow in DMA interrupt service function

In the audio_DMATxCallback function, it first determines whether the g_I2sBclkSwitchFlag variable is 1. If it is 1, it
indicates that the margin of the ring buffer exceeds the set threshold. The program calls the audio_SetI2sWS function
to adjust the frequency division coefficient of I2S_BCLK and the word length of I2S to adjust the I2S transmission rate.
The margin of the ring buffer returns to the threshold range as soon as possible to avoid overflow or underflow of the
ring buffer. For details on adjusting I2S_WS, see Update the I2S transfer rate. If there is no need to adjust I2S_WS,
directly call the audio_GetAndTransmitSamples function to copy 384 bytes audio data in gs_Interfaces[0].buffer to the
s_audioService_BufferOut array. Call the audio_ConfigureLinkTxDma function to start a new DMA transfer, and transfer 384
bytes from the s_audioService_BufferOut array to the I2S TX data register.

NXP Semiconductors
Implementation

USB Audio Synchronous Mode on KL27, Rev. 0, 26 August 2021
Application Note 8 / 12

2.7 Update the I2S transfer rate
From the content of the previous section, if the margin of the ring buffer exceeds the threshold range, the audio_SetI2sWS
function must be called in the interrupt service function triggered by the current DMA transfer to update the I2S_WS. According
to the description in KL27 clock distribution, I2S_BCLK is obtained by dividing the frequency of I2S_MCLK, and I2S_BCLK =
I2S_MCLK/(DIV+1)/2 = I2S_WS * 2 * wordLength. You can adjust I2S_WS by modifying the integer division factor of I2S_BCLK
and I2S word length.

Table 4. Frequency division factor of I2S_BCLK

DIV Bit Clock Divide

Divides down the audio master clock to generate the bit clock when configured for an internal bit clock. The
division value in (DIV + 1) * 2.

Table 4 shows that the frequency division factor of I2S_BCLK can only be an even number. The initial DIV value is 9, and the
frequency division factor is 20. I2S_BCLK = 48 M /20 = 2.4 M. To increase I2S_BCLK, set the value of DIV to 8 and the frequency
division factor is 18, I2S_BCLK = 48 M / 18 = 2.67 M, I2S_WS = I2S_BCLK/2/25 bit = 53.3 K. To reduce I2S_BCLK, set the value
of DIV to 10, the frequency division factor is 22, I2S_BCLK = 48 M / 22 = 2.18 M, I2S_WS = I2S_BCLK/2/25 bit = 43.6 K.

If only the frequency division factor of I2S_BCLK is modified, the I2S_WS and 48 K sample rate are quite different. It is also
possible to adjust the I2S word length to obtain a sample rate closer to 48 K. For example, when the frequency division factor is
22, modify the word length to 24 bit, I2S_WS = I2S_BCLK/2/24 = 45.4 K. The three I2S_WS frequencies in Table 5 are used in
this example.

Table 5. Three I2S_WS frequency configurations

I2S_WS Word Length DIV g_I2sFormatIndex

47619 28 8 0

48000 25 9 1

48387 31 7 2

Figure 8. I2S TX format definition

Three I2S_WS frequencies of 47619, 48000, and 48387 are used in this example to match the transfer rate of the USB host. The
USB interrupt service function, periodically calculates the margin of the ring buffer and adjusts I2S_BCLK and I2S_WS in time
to avoid overflow and underflow of audio data in the ring buffer. For details on updating I2S_WS, see the code attached with the
application note.

NXP Semiconductors
Implementation

USB Audio Synchronous Mode on KL27, Rev. 0, 26 August 2021
Application Note 9 / 12

3 Test
Download the modified SDK code to the NxH3670 SDK board and run the program. Figure 9 shows the I2S signal captured by
the logic analyzer. The USB host used for the test is Windows 10.

Figure 9. I2S signal captured by logic analyzer

Figure 9 shows that when testing on Window 10, the I2S_WS is adjusted every 9 seconds. In practice, the frequency of adjusting
I2S_WS is related to the clock of the USB host and the I2S clock of the USB device.

Figure 10. Update I2S_WS frequency

Figure 10 shows the time when I2S_WS is updated. The frequency of I2S_WS is switched from 48000 to 47619, and the word
length is switched from 25 bit to 28 bit. Codec automatically ignores the excess 4-bit data.

4 Conclusion
This application note introduces an audio synchronization method for USB audio speaker of Kinetis L series MCUs. The integer
division factor of I2S_BCLK and I2S word length is dynamically adjusted to adjust the sample rate of I2S such that the working
frequency of I2S synchronizes with the transfer rate of the USB host.

NXP Semiconductors
Test

USB Audio Synchronous Mode on KL27, Rev. 0, 26 August 2021
Application Note 10 / 12

5 Reference
1. UM11150.

2. USB 2.0 Specification

3. Universal Serial Bus Device Class Definition for Audio Devices

6 Revision history
Revision history summarizes the changes done to this document since the initial release.

Table 6. Revision history

Revision number Date Substantive changes

0 26 August 2021 Initial release

NXP Semiconductors
Reference

USB Audio Synchronous Mode on KL27, Rev. 0, 26 August 2021
Application Note 11 / 12

https://www.nxp.com/docs/en/user-guide/UM11150.pdf
https://www.usb.org/document-library/usb-20-specification
https://www.usb.org/sites/default/files/audio10.pdf

How To Reach
Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Limited warranty and liability — Information in this document is provided solely to enable system and software implementers to use NXP
products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on
the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does
NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets and/or
specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including
“typicals,” must be validated for each customer application by customer's technical experts. NXP does not convey any license under its
patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the
following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including
without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all
information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer
is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these
vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other open and/or proprietary
technologies supported by NXP products for use in customer’s applications. NXP accepts no liability for any vulnerability. Customer
should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that
best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products
and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless
of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP, HITAG,
ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE
ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS,
UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis,
Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, Tower,
TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V. All other product or service names are the
property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight,
Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb,
TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm
Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power
Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org. M, M Mobileye and other Mobileye trademarks or logos appearing herein are trademarks of Mobileye Vision
Technologies Ltd. in the United States, the EU and/or other jurisdictions.

© NXP B.V. 2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 26 August 2021
Document identifier: AN13364

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Implementation
	2.1 Required software and hardware
	2.2 System block diagram
	2.3 Enable USB audio synchronous mode
	2.4 KL27 clock distribution
	2.5 Codec configuration
	2.6 Ring buffer management
	2.6.1 Threshold setting of ring buffer
	2.6.2 USB interrupt service function
	2.6.3 DMA interrupt service function

	2.7 Update the I2S transfer rate

	3 Test
	4 Conclusion
	5 Reference
	6 Revision history

