
1 Introduction
Some latest NXP MCUs (i.MX RT6xx, i.MX RT5xx, LPC553x/LPC55S3x) 
have integrated MIPI I3C controller to support faster, more power efficient, 
standardized sensor communication, while still maintaining backward 
compatible with legacy I2C. This major improvement is expected to be used in 
many mobile and Internet-of-Things application.

The I3C bus protocol supports:

• In-band command codes (Common Command Codes (CCC))

• Dynamic Address Assignment (DAA)

• In-band interrupts (IBI): interrupts can go from slave to master without extra wires that slave can take temporary control of the 
bus and report certain event to the master.

• Multi-master / multi-drop

• Hot-Join

• Compatible with legacy I2C but without clock stretching

Figure 1. MIPI I3C Standardize Sensor Connectivity

This application note describes how to use the LPC553x/LPC55S3x I3C controller as a master, take full advantage of some key 
features of the I3C such as DAA and IBI, how to build a sensor network, and communicate with these slave sensors on the network.

It starts with a general description of the basic functionality of I3C and then describes how to use NXP SDK APIs to communicate 
with I3C slave sensors through CCC commands, assign slave addresses dynamically, and exchange data with these sensors 
directly, finally, it gives some examples how to use callbacks provided by SDK to handle In-band interrupts from these 
slave sensors.

The S/W package is tested on the LPC553x/LPC55S3x EVK board communicating with an onboard InvenSense ICM42688 
motion-tracking sensor and connected with two P3T11xx temperature sensors on an NXP temperature sensor module board 
externally through the I3C bus.
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2 MIPI I3C Basic
This section gives basic information about the features of the LPC553x/LPC55S3x MCU I3C controller and Common Command 
Code (CCC).

2.1 Features
LPC553x/LPC55S3x MCU I3C controller supports:

• 2-wire multi-drop bus capable of 12 MHz clock speeds, with up to 11 devices.

• Uses standard pads (I2C uses special pads) with 4 mA drive.

• Slave does not require a static address and its address can be dynamically assigned by the master. However, slaves may 
have an I2C static address assigned at start-up, so that the slave can operate naturally on an I2C-bus.

• In-Band interrupts (IBI), which allow slaves to notify a master without requiring an external pin.

2.2 Common Command Code (CCC)
MIPI I3C master can use Common Command Code (CCC) broadcast commands to control multiple I3C devices at once or direct 
commands to control each individual device, while I3C slave devices listen to and support a number of CCC commands to control 
and report certain device features and status, for example, bus reset, report device provisional ID (PID), bus characteristics 
register (BCR), device characteristics register (DCR), enabled/disable slave events such as in-band interrupts or renew the slave 
dynamic address.

There are many CCC commands in the MIPI I3C spec. Some are broadcast and some are direct. In order to support Dynamic 
Address Assignment (DAA), only a few most important commands related to this application note are listed here. These CCC 
commands are:

• RSTDAA Reset dynamic addresses on all the slave devices on the bus.

• ENTDAA Force all I3C slave devices (if they do not already have a dynamic address assigned) to go into address 
assignment mode. 

• SETDASA Set dynamic address from static address. Note: this SETDASA CCC command support is not required by all 
I3C slave devices.

• SETNEWDA Set new dynamic address.

• ENEC/DISEC Enable/Disable slave events.

For more information about the CCC commands, check http://mipi.org.

3 Setup an I3C Sensor Network
In this sensor network example, three I3C slave sensors are used:

• InverSense ICM42688 Motion Tracking sensor

• NXP P3T1175 Temperature Sensor

• NXP P3T1108 Temperature Sensor

On LPC553x/LPC55S3x IOCON, these three pins are used for I3C communication.

PIO0_9 I3C_SCL (I3C clock)

PIO0_24 I3C_SDA (I3C data)

PIO0_28 I3C_PUR (I3C pull-up control on SDA line).

On the LPC553x/LPC55S3x EVK board, these pins are connected to the onboard motion tracking sensor ICM42688P directly. 
Externally, the EVK board also connects to the NXP P3T11xx temperature module where both P3T1175 and P3T1108 are on the 
same I3C bus. The connection between the two boards is shown in the table below:
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Table 1. The connection between LPC553x/LPC55S3x EVK board and NXP P3T11xx temperature module

Pin function LPC553x/LPC55S3x EVK board NXP P3T11xx Temperature Module

I3C_SCL J9-20 J13-1

I3C_SDA J9-18 J13-2

GND J9-14 J13-4

Power 3.3V J10-8 J4-4

GND J10-12 J4-6

 
A known issue was described at the end of this application note explaining why the onboard Arduino connector on 
the NXP P3T11xx Temperature Module cannot be used.

  NOTE  

Figure 2. LPC55S3x EVK board

For more information on the jumper setting, refer to LPC553x/LPC55S3x-EVK Board User Manual.

P3T11xx Temperature Module Jumper setting (Using default setting from the schematics if not mentioned below):

JP2 1-2 close I3C SCL

JP3 1-2 close I3C SDA

 
Since JP1 2-3 close that temperature module uses 3.3 V power supply as default, JP1, voltage selector, on 
LPC553x/LPC55S3x EVK board, 1-2 should be closed (3.3 V) accordingly.

  NOTE  

Table 2. Data based on the P3T11xx module default jumper setting

NXP Temperature Sensor Slave Static Address

P3T1175 0x4C

P3T1108 0x48
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Figure 3. NXP P3T11xx Temperature Module

4 I3C DAA and sensor network discovery
This section describes the steps of usage the existing I3C driver APIs from SDK to configure the I3C controller as the I3C master, 
to use CCC commands and assign dynamic addresses to these sensors on the network, to insert callbacks to listen to the IBI 
interrupts from the slaves, and finally, to read sensor data continuously and response to IBI interrupts.

Along with the application note, there is the complete source code for the I3C sensor network example compiled in Keil, IAR, and 
MCUXpresso IDEs. Two zip files are included, one for Keil and IAR and the other is for MCUXpresso. The Keil are IAR projects 
are in the directory \boards\lpcxpresso55s36\driver_examples\i3c\i3c_sensor_network.

4.1 I3C master initialization and DAA
Our I3C master initialization in this example, i3c_sensor_network.c, includes the following:

• Depending on the system clock setting, you might need a clock divider for the I3C clock.

— The master needs an accurate clock, capable of the frequency that is a multiple of the I3C clock. The higher baud 
rate you need to achieve, the higher clock frequency you must consider for the I3C controller. For example, this 
example sets a 50 MHz clock to the I3C controller which ideally supports both 2.5 MHz and 10 MHz I3C clocks.

— Due to various device characteristics of the I3C slave connected to the I3C bus, a slower push-pull baud rate must 
be used before DAA. This example sets PPBAUD to 2 Mbit/s and ODBAUD to 400 Kbps initially. Once the address 
assignment is done, a higher push-pull baud rate can be used for data communication. The SDK I3C driver API 
I3C_MasterSetBaudRate() can be used to set a higher baud rate for sensor data reading.

— The divider for the PPBAUD is a 4-bit field in MCONFIG register. It is not possible to set a very fast I3C clock with 
very low PPBAUD. If some devices do not support higher PPBAUD during DAA, it is possible to set a slower I3C 
clock along with lower PPBAUD before DAA, then set a faster I3C clock along with higher PPBAUD.

• Create a device address table for all sensors on the I3C bus, make all these sensors listen to the broadcast commands 
from the master.

• Create an I3C secondary master as the first node on the bus and assign a dynamic address to this secondary master with 
the NXP vendor ID and some pseudodevice characteristics.

• The I3C_BusMasterCreate() API is the single most important engine for creating a master structure and assigning 
dynamic addresses to the devices on the bus.
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The master structure creation must include not only all the resource capabilities of the masters but also consider all the 
possible devices, I3C or I2C, connected to the bus, therefore, all the baud rates, I2C baud rate, I3C push-pull baud rate, and 
I3C open-drain baud rate must be considered and configured here.

• Issue first the RSTDAA CCC broadcast command to all slaves on the bus to ensure a clean start.

• Issue the DISEC CCC broadcast command to all the slaves to disable slave events during DAA to prevent events such as 
slave in-band interrupts.

• The master operates with a built-in Enter Dynamic Address Assignment (ENTDAA) mechanism to simplify assignment of 
DAs to slaves. This built-in mechanism also takes care of those slave devices that do not support the SETDASA CCC 
command. In the LPC553x/LPC55S3x User Manual, Section “Assigning dynamic addresses to I3C devices” describes the 
DAA mechanism in detail. In SDK for LPC553x/LPC55S3x, API I3C_BusMasterDoDAA() in the I3C driver does exactly 
that to assign dynamic address to slave devices.

• During the DAA process, the master also reads the unique device information and capabilities of the slave, such as part 
number, Vendor ID(VID), BCR, DCR registers and saves them in the device information data structure for each device.

• Issue the ENEC CCC broadcast command to all the slaves to re-enable slave events after DAA finishes.

Once DAA is done, inside the i3c_sensor_network.c file, the main routine, demo_i3cBus.i3cDevList contains a list of the 
devices found on the I3C bus. The unique device information data is used as the identifier of all the devices on the list.

The device handle is extracted based on the unique part number and device VID and used for peer-to-peer communication 
between the master and the sensor device.

Table 3. Sensor-Specific information before and after DAA

Device Name Static Address, based 
on external pull
up/down

Dynamic 
Address after 
DAA

Part Number after 
DAA

VID after DAA Part 
Number References

ICM42688 0x69 0xB N/A 0x235

P3T1175 0x4C 0xA 0x152A 0x11B P3T1175 Datasheet 
Section 7.4.2

P3T1108 0x48 0x9 0x1529 0x11B P3T1108 Datasheet 
Section 7.4.2

MIPI Alliance Manufacturer ID or vendor ID information can be found on the https://mid.mipi.org/ website. For example, All NXP 
I3C devices have the same Vendor ID 0x11B.

 
Static address is not required during DAA. Static addresses are listed in the S/W example as they 
are useful if you want to use a static address to communicate with the sensor directly regardless 
communication type I2C or I3C. SDK has several APIs to do that, I3C_MasterTransferBlocking() 
and I3C_MasterTransferNonBlocking().

  NOTE  

4.2 I3C In-Band Interrupt (IBI)
In-Band Interrupt (IBI) is a method whereby a slave device can emit its address into the arbitrated Address header on the I3C Bus 
to notify the controller of the interrupt.

The slave device can take temporary control of the bus and report a certain event to the master. IBI is over the serial bus rather than 
requiring separate pins. It is a major improvement over I2C, where an interrupt from the slave device requires an additional pin.

Every I3C slave device must have a read-only Bus Characterization Register (BCR) and a Device Characterization Register 
(DCR). These register information can be read using one of the CCC commands. Not every I3C slave device can support IBI 
though, bit 1 of the BCR register indicates whether IBI request is capable or not.

NXP Semiconductors
I3C DAA and sensor network discovery

Building an I3C Sensor Network Using LPC553x/LPC55S3x, Rev. 1, 04 May 2022
Application Note 5 / 12

https://mid.mipi.org/


During DAA, the master device uses the built-in CCC command mechanism to collect device information and retrieve BCR and 
DCR register information from the slave device.

4.2.1 Sensor specific IBI configuration
IBIs are various from sensor to sensor and must be configured before they can be used.

In this example, on ICM42688 sensor, the tap detect interrupt is routed to IBI.

On NXP P3T1175 and P3T1198 sensor, the temperature alert interrupt is routed to IBI. The alert is a transition above and then 
below upper threshold or lower threshold.

Information on how to configure an interrupt and route it to the IBI is device-specific. The generic device register access APIs 
and device-specific IBI configuration S/W examples are included in fsl_icm42688p.c/.h and fsl_p3t11xx.c/.h files. For more 
device-specific information, refer to the data sheets of these sensors.

4.2.2 Sensor IBI registration
SDK provides an API, I3C_BusMasterRegisterDevIBI(), to register device IBI to the master.

Device IBI registration and a corresponding callback routine are needed to handle IBI interrupt when generated.

The example is provided in this demo software package.

4.3 I3C Sensor Network Demo Operation
The section describes how this sensor network demo works in details.

Due to the design limitation on LPC553x/LPC55S3x that the SWDIO pin, PIO0_9, is shared with the I3C_SCL pin, onboard 
MCULink debug probe cannot be used for debugging or programming once this I3C demo software is programmed and is running. 
To disable SWD while keeping the MCULink Virtual Communication(VCOM) port running, JP27 should be closed once the 
programming is done.

To use the MCULink VCOM feature from J1, JP12 must be closed (default) and JP26 must be open (default).

Once the I3C demo code is running, MCULink cannot be used to program the flash anymore. The NXP blhost utility must be used 
to erase the whole flash first if you want to make some change and rerun this demo or run another application. Jumper setting 
change is required from programming to code execution and back to programming.

4.3.1 Jumper setting and operation for programming
To ensure a clean start, erase the whole flash first. Here is the sequence of the operation:

1. Disconnect COMx from “Tera Term” used for debugging printout if any.

2. Change the boot mode on jumper J43, 1-2 Open and 3-4 closed: ISP0 high and ISP1 low, target LPC553x/LPC55S3x 
MCU going to ISP boot mode.

3. Close JP27 to force MCULink VCOM to be used as the UART ISP COM port.

4. Power the board through J1 (MCULink).

5. Press the Reset button to ensure LPC553x/LPC55S3x MCU is in the ISP boot mode.

6. Open a command window to run blhost: blhost -p COMx -- flash-erase-all, where COMx is the MCULink VCOM 
port shown on the Windows Device Manager.

Once the flash has been erased successfully, message should show on Command Prompt:
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Figure 4. Blhost Command Response

7. Once the flash is erased, open JP27. Now, MCULink debug probe must be active and ready to program the flash.

8. Recompile and program sensor network demo S/W onto the internal flash.

 
The debugger must also work until the breakpoint hits where PIO0_9 is reconfigured as the I3C_SLK pin. Exit 
debugger once the flash programming is done.

  NOTE  

4.3.2 Jumper setting and operation for code execution
For the demo free running, follow the steps below:

1. Close JP27 so that demo S/W printout uses the MCULink VCOM port.

2. Change the boot mode on J43, close 1-2 and 3-4: Both ISP0 and ISP1 are low. LPC553x/LPC55S3x Target MCU 
forces to internal flash boot.

3. Power the board through J1.

4. Re-enable UART connection on “Tera Term” for display.

If you have made code change and rebuilt in I3C sensor network demo, go back to the steps mentioned in Section 4.3.1 again.

4.3.3 Demo operation and generating IBI
Once this demo is up and running, it starts displaying messages on “Tera Term” over the MCULink VCOM port at 115200 bits/s 
(8N1) including the dynamic address of each sensor on the network, sensor data reading from each sensor continuously. The 
demo is also monitoring IBI interrupt from the slave if any.

 
MCULink VCOM port is shared for both “blhost” utility and demo message display. If blhost is used to erase the 
flash, disconnect the “Tera Term” COMx port first, once it is done, reconnect before running the demo.

  NOTE  

Once an IBI interrupt is generated, the demo exits, a reset to the board is required to restart.

The IBI interrupt from ICM42688 is a tap detector. The sensitivity of the tap detection on each ICM42688 may vary, any tap on 
the component or the board may generate an IBI interrupt.

The IBI interrupt from NXP P3T11xx sensor is an alert signal when temperature reading is a transition above and then below the 
upper threshold or lower threshold.

On the temperature sensors, the upper threshold is set to 30 degree C and lower threshold is set to 20 degree C, defined in 
the p3t11xx.h file. Depending on the working environment, it is necessary to adjust the thresholds accordingly or unwanted IBI 
may generate accidentally. The fsl_p3t11xx.c has the example how to program the upper and lower limit of the configuration 
registers of the sensor.

The display of the message can be seen below:
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Figure 5. Sensor Network Demo Message Display

5 Known issues
RX data corruption was found on the master side due to RXFIFO ringing when a level shifter was added between the master 
and the slave. Many I3C slave devices can support wide range supply voltage, VCC, for example, P3T1108 is 1.4 V to 3.6 V and 
ICM42688 is 1.61 V to 3.6 V. Thus, level-shifter is not required between the master and most of the I3C slave parts.

Some related issues were found on NXP P3T11xx Temperature Sensor Modules. Once the onboard level-shifter, NTS0304(U4), 
is used Dynamic Address Assignment fails. Thus, the Arduino connector on the temperature sensor module cannot be used. 
Similar issues have also been found on the MIMXRT6XX EVK Rev. E board. In this case, data corruption happens due to RX FIFO 
ringing of the I3C controller once the NXP NTS0102 level shifter is used.

Depending on the hardware environment, if you have high capacitance on the board such as longer trace due to layout or off board 
wiring, the addition of the level shifter could add another level of complexity.

Changing the SLEW bit (bit 6) of the IOCON register from fast mode to standard mode on I3C_SCL and I3C_SDA pins may 
be helpful.

If level-shifter is required, NXP recently launched P3A9606, a bidirectional I3C/I2C voltage-level translator, which is targeted for 
a I3C application.

6 References
Here is the list of the references related to this demo:

• LPC553x/LPC55S3x-EVK Board User Manual

• LPC553x/LPC55S3x-EVK Schematics

• P3T1108UK-P3T1175DP Temperature Sensor Daughter Card Schematics

• ICM-42688-P 6-Axis MEMS Motion Tracking Device Datasheet

• P3T1108UK I3C Digital Temperature Sensor Datasheet

• P3T1175 I3C Digital Temperature Sensor Datasheet

• MIPI Alliance I3C Specification
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7 Conclusion
LPC553x/LPC55S3x has some enhanced features to support sensor communication. Its I3C controller can be used for numerous 
mobile and IoT applications.

The I3C controller can do many little things I2C cannot provide: DAA and IBI are two main advantages. This example has 
demonstrated how to take advantage of the existing I3C APIs provided by our SDK and build a real-world sensor application.

8 Revision history
Table 4. Revision history

Revision number Date Substantive changes

1 04 May 2022 Changes made: in the 
title, “LPC55S3x” is replaced 

with “LPC553x/LPC55S3x”; in 
the document:“LPC55S3x” is 

replaced with “LPC553x/LPC55S3x”, 
“LPC55S36” is replaced with 

“LPC553x/LPC55S3x”

0 18 February 2022 Initial release
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Definitions
Draft — A draft status on a document indicates that the content is still 
under internal review and subject to formal approval, which may result 
in modifications or additions. NXP Semiconductors does not give any 
representations or warranties as to the accuracy or completeness of 
information included in a draft version of a document and shall have no 
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed 
to be accurate and reliable. However, NXP Semiconductors does not give 
any representations or warranties, expressed or implied, as to the accuracy 
or completeness of such information and shall have no liability for the 
consequences of use of such information. NXP Semiconductors takes no 
responsibility for the content in this document if provided by an information 
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, 
punitive, special or consequential damages (including - without limitation - 
lost profits, lost savings, business interruption, costs related to the removal or 
replacement of any products or rework charges) whether or not such damages 
are based on tort (including negligence), warranty, breach of contract or any 
other legal theory.

Notwithstanding any damages that customer might incur for any reason 
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards 
customer for the products described herein shall be limited in accordance with 
the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make 
changes to information published in this document, including without limitation 
specifications and product descriptions, at any time and without notice. This 
document supersedes and replaces all information supplied prior to the 
publication hereof.

Suitability for use — NXP Semiconductors products are not designed, 
authorized or warranted to be suitable for use in life support, life-critical 
or safety-critical systems or equipment, nor in applications where failure or 
malfunction of an NXP Semiconductors product can reasonably be expected 
to result in personal injury, death or severe property or environmental damage. 
NXP Semiconductors and its suppliers accept no liability for inclusion and/or 
use of NXP Semiconductors products in such equipment or applications and 
therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these 
products are for illustrative purposes only. NXP Semiconductors makes no 
representation or warranty that such applications will be suitable for the 
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications 
and products using NXP Semiconductors products, and NXP Semiconductors 
accepts no liability for any assistance with applications or customer product 
design. It is customer’s sole responsibility to determine whether the NXP 
Semiconductors product is suitable and fit for the customer’s applications and 
products planned, as well as for the planned application and use of customer’s 
third party customer(s). Customers should provide appropriate design and 
operating safeguards to minimize the risks associated with their applications 
and products.

NXP Semiconductors does not accept any liability related to any default, 
damage, costs or problem which is based on any weakness or default in the 
customer’s applications or products, or the application or use by customer’s 
third party customer(s). Customer is responsible for doing all necessary testing 
for the customer’s applications and products using NXP Semiconductors 
products in order to avoid a default of the applications and the products or of the 
application or use by customer’s third party customer(s). NXP does not accept 
any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors products 
are sold subject to the general terms and conditions of commercial sale, 
as published at http://www.nxp.com/profile/terms, unless otherwise agreed 
in a valid written individual agreement. In case an individual agreement 
is concluded only the terms and conditions of the respective agreement 
shall apply. NXP Semiconductors hereby expressly objects to applying the 
customer’s general terms and conditions with regard to the purchase of NXP 
Semiconductors products by customer.

Export control — This document as well as the item(s) described herein may be 
subject to export control regulations. Export might require a prior authorization 
from competent authorities.

Suitability for use in non-automotive qualified products — Unless this 
data sheet expressly states that this specific NXP Semiconductors product 
is automotive qualified, the product is not suitable for automotive use. 
It is neither qualified nor tested in accordance with automotive testing 
or application requirements. NXP Semiconductors accepts no liability for 
inclusion and/or use of non-automotive qualified products in automotive 
equipment or applications.

In the event that customer uses the product for design-in and use in automotive 
applications to automotive specifications and standards, customer (a) shall use 
the product without NXP Semiconductors’ warranty of the product for such 
automotive applications, use and specifications, and (b) whenever customer 
uses the product for automotive applications beyond NXP Semiconductors’ 
specifications such use shall be solely at customer’s own risk, and (c) customer 
fully indemnifies NXP Semiconductors for any liability, damages or failed 
product claims resulting from customer design and use of the product for 
automotive applications beyond NXP Semiconductors’ standard warranty and 
NXP Semiconductors’ product specifications.
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Translations — A non-English (translated) version of a document, including 
the legal information in that document, is for reference only. The English 
version shall prevail in case of any discrepancy between the translated and 
English versions.

Security — Customer understands that all NXP products may be subject to 
unidentified vulnerabilities or may support established security standards or 
specifications with known limitations. Customer is responsible for the design 
and operation of its applications and products throughout their lifecycles 
to reduce the effect of these vulnerabilities on customer’s applications 
and products. Customer’s responsibility also extends to other open and/or 
proprietary technologies supported by NXP products for use in customer’s 
applications. NXP accepts no liability for any vulnerability. Customer should 
regularly check security updates from NXP and follow up appropriately.

Customer shall select products with security features that best meet rules, 
regulations, and standards of the intended application and make the 
ultimate design decisions regarding its products and is solely responsible 
for compliance with all legal, regulatory, and security related requirements 
concerning its products, regardless of any information or support that may be 
provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable 
at PSIRT@nxp.com) that manages the investigation, reporting, and solution 
release to security vulnerabilities of NXP products.
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rights reserved.
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