
1 Overview
Many applications or products need to upgrade firmware in
field to fix some bugs found or sometimes to improve
performance. Most of them do not use the dedicated debug
interface, but only use the communication interfaces,such as
UART, USB, I2C, and so on. In this case, a serial bootloader
is required to upgrade firmware upgrade via one of the
communication interfaces without debugger or dedicated
program tools.

This application note guides how to design bootloader on
Kinetis L series with IIC interface.

2 Introduction
Bootloader is a built-in firmware which is implemented to
program the application code to flash via the communication
interface. This application note will introduce how to use the
Kinetis L series Freedom Development platform, FRDM-
KL05Z board to convert UART data from PC terminal to the
IIC bus, and communicate with the target board (L series
board) to implement update of the target application code. See
the following figure.

Freescale Semiconductor Document Number:AN4655

Application Note Rev. 0, 01/2013

IIC Bootloader Design on the
Kinetis L Series
by: Wang Peng

© 2013 Freescale Semiconductor, Inc.

Contents

1 Overview..1

2 Introduction..1

3 Software architecture..2

4 Memory allocation...10

5 Conclusion...11

6 References...12

7 Glossary...12

Figure 1. Top level view

The bootloader takes advantage of AN2295SW_REV1 software tools, available on freescale.com, which is widely used in
all Kinetis products to implement bootloader to update the application code through the UART interface.

The convert board uses the freedom board FRDM-KL05Z to convert UART bus to IIC bus, and repackage data transfer to the
target board.

The target board has built-in bootloader code, which acts as IIC slave device to communicate with the convert board. After
receiving the command and data, it will upgrade the application on the target board.

The sample code AN4655SW associated with this application note (available on freescale.com) can directly run on the
FRDM-KL05 board, and the “bootloader” shall be downloaded to the target board, “UartToIIC” to convert board, and project
“demo_bootloader” is for generating S19 file, which can be downloaded using PC software.

3 Software architecture
The software tool attached with this application note, AN4655SW.zip (containing win_hc08sprg.exe) available on
freescale.com, decodes S19 file and communicates with the convert board through FC protocol.

3.1 Convert board
The convert board communicates with PC terminal through the FC protocol. For detail information regarding the FC
protocol, see AN2295: Developer's Serial Bootloader for M68HC08 and HCS08 MCUs, available on freescale.com.

Convert board will be initialized to IIC master and communicates with the target board, in order to receive or transmit data
package with the target board using IIC bus; it repackages data frame with data length and checksum. Below is the format of
the data package.

Data length Original data frame Check Sum

After that, it reads data from slave; the first data received is to determine whether the slave is ready. If it is, (command |0x80),
then it indicates to the receiver that the correct acknowledge is received, for example:

When the command sent to slave is 0x03, the received acknowledge must be 0x03|0x80.

At first, it will send FC_CMD_HOOK(0x02) to target board, and then reads status from the target board to check if it works
in bootloader mode or user code mode.

Software architecture

IIC Bootloader Design on the Kinetis L Series, Rev. 0, 01/2013

2 Freescale Semiconductor, Inc.

http://www.freescale.com
http://www.freescale.com
http://www.freescale.com
http://www.freescale.com

If the received state is FC_CMD_HOOK|0x80, then it will send 0xFC to start to hook with PC terminal, otherwise, it will
always check state of the target board till it receives FC_CMD_HOOK|0x80.

The following figure shows the software flow.

Figure 2. Convert board software flow chart

Convert board functions as a bridge between PC terminal and target board, with which a S19 file can be downloaded to the
target board from PC.

3.2 Target board
The target board contains built-in bootloader code. After power up, it first checks the work mode to know whether it is in
boot mode or user code mode. There are some ways to do such check, for example, checking the level of an external GPIO.

• If the GPIO pin is low, then it will enter into boot mode to run the bootloader.
• If the GPIO pin is high, then it will enter user code mode to run the application code.

But for some applications, there are limited pin/wires available and no extra GPIO for such purpose. For such cases, the
following sections introduce a way to determine work mode through a flag in flash which can be modified in the application
code.

3.2.1 Flag in flash
It is known that programming flash results in changing a bit from 1 to 0; if the bit needs to be changed to 1, the flash must be
erased first. For KL05Z series chip, one sector is 1KB. So, one sector can be used for saving parameter, and in order to
reduce the erase times, and increase the flash life, make an algorithm to implement read-modify-write, after the entire sector
space is written, and then erase one time flash sector.

In this application, the flag only uses one byte; so the total number of flag write times is as below:

Software architecture

IIC Bootloader Design on the Kinetis L Series, Rev. 0, 01/2013

Freescale Semiconductor, Inc. 3

Total write times = 1024 * 50k

The flag is defined as below:

#define WORK_MODE_BOOT_LOADER 0xFF
#define WORK_MODE_USER_APP 0x5a
#define WORK_MODE_INVALID_FLAG 0x00

The flow chart for checking the flag to determine the work mode of the target board is given below.

Figure 3. Check flag flow chart

The sample code snippet to check flag status is given below.

uint32_t Check_WorkMode(uint32_t uiStartAddress, uint32_t uiEndAddress,uint32_t *
pCurrentAddress)
 {
uint32_t i;
 for(i=uiStartAddress;i<uiEndAddress;i++)
 {
 switch(*((uint8_t *)i))
 {
 case WORK_MODE_BOOT_LOADER:
 *pCurrentAddress = i;
 return WORK_MODE_BOOT_LOADER;
 case WORK_MODE_USER_APP:
 *pCurrentAddress = i;
 return WORK_MODE_USER_APP;
 case WORK_MODE_INVALID_FLAG:
 break;
 default:
 return WORK_MODE_INVALID_FLAG;
 }
 }
*pCurrentAddress = uiStartAddress;
// if all flag is not matching, return to boot loader mode
return WORK_MODE_INVALID_FLAG;
}

This flag can be changed in the application code or bootloader. After successfully updating the code, it will change flag to
user mode.

Software architecture

IIC Bootloader Design on the Kinetis L Series, Rev. 0, 01/2013

4 Freescale Semiconductor, Inc.

In application code, the user can also change the flag from user mode to bootloader mode, and on the next reset, it will enter
the bootloader mode and prepare to update the application code.

The flow chart to modify the flag so as to change the work mode is shown below.

Figure 4. Modify flag flow chart

Sample code snippet to modify flag to other status is shown below:

/***
* Function: Write_WorkMode
* Description: modify flag to expected status
* Returns: result 1 - success
 * 0 - fail
 ***/
 unsigned char Write_WorkMode(uint8_t WorkMode)
 {
 uint32_t uiCurrentAddress;
 uint32_t uiCurrentAddressContent;
 uint32_t ui32CurrentAddress;
 uint8_t *pPointer;
 uint8_t uiCurrentWorkMode;
 pPointer = (uint8_t *)&uiCurrentAddressContent;
 uiCurrentWorkMode =
Check_WorkMode(FLASH_FLAG_START_ADDRESS,FLASH_FLAG_END_ADDRESS,&uiCurrentAddress);
 if(WORK_MODE_INVALID_FLAG == uiCurrentWorkMode)
 {
 // erase flash
 if(Flash_SectorErase(FLASH_FLAG_START_ADDRESS)!= Flash_OK)
 {
 return 0;
 }
 uiCurrentWorkMode = WORK_MODE_BOOT_LOADER;
 }
 if(WorkMode == WORK_MODE_BOOT_LOADER)
 {
 if(uiCurrentWorkMode == WORK_MODE_USER_APP)

Software architecture

IIC Bootloader Design on the Kinetis L Series, Rev. 0, 01/2013

Freescale Semiconductor, Inc. 5

 {
 ui32CurrentAddress = (uiCurrentAddress/4)*4;
 uiCurrentAddressContent = *((uint32_t*)ui32CurrentAddress);
 pPointer[uiCurrentAddress%4] = WORK_MODE_INVALID_FLAG;
 if(Flash_ByteProgram(ui32CurrentAddress,
&uiCurrentAddressContent,4) != Flash_OK)
 {
 return 0;
 }
 }
 if((uiCurrentAddress+1) >= FLASH_FLAG_END_ADDRESS)
 {
 // this is the last record
 if(Flash_SectorErase(FLASH_FLAG_START_ADDRESS)!= Flash_OK)
 {
 return 0;
 }
 }
 // after erase, default is boot loader mode
 }
 else if(WorkMode == WORK_MODE_USER_APP)
 {
 if(uiCurrentWorkMode == WORK_MODE_BOOT_LOADER)
 {
 ui32CurrentAddress = (uiCurrentAddress/4)*4;
 uiCurrentAddressContent = *((uint32_t *)ui32CurrentAddress);
 pPointer[uiCurrentAddress%4] = WORK_MODE_USER_APP;
 if(Flash_ByteProgram(ui32CurrentAddress,
&uiCurrentAddressContent,4) != Flash_OK)
 {
 return 0;
 }
 }
 }
 else
 {
 //
 }
 return 1;
 }

3.2.2 IIC slave driver
The target board configures IIC as a slave. It receives and transmits data to the master in IIC interrupt service routine. For
detailed interrupt flow, see KL05P48M48SF1RM: KL05 Sub-Family Reference Manual, available on freescale.com. Below
is a sample code snippet:

 void IIC_Irq(void)
 {
 volatile unsigned char Dummy;
 if(I2C0_S & I2C_S_IICIF_MASK)
 {
 I2C0_S |= I2C_S_IICIF_MASK;
 if(I2C0_S & I2C_S_ARBL_MASK)
 {
 I2C0_S |= I2C_S_ARBL_MASK;
 if(!(I2C0_S & I2C_S_IAAS_MASK))
 {
 // IIAAS is 0
 return;
 }

 }
 if(I2C0_S & I2C_S_IAAS_MASK)
 {

Software architecture

IIC Bootloader Design on the Kinetis L Series, Rev. 0, 01/2013

6 Freescale Semiconductor, Inc.

http://www.freescale.com

 I2C0_C1 &= ~I2C_C1_TXAK_MASK;
 // clear index counter
 m_ucSendIndex = 0;
 m_ucRecIndex = 0;
 // clear frame rec flag
 g_bIICRecFrameFlag = 0;
 if(I2C0_S & I2C_S_SRW_MASK)
 {
 // slave send data
 I2C0_C1 |= I2C_C1_TX_MASK;
 I2C0_D = m_ucSendBuff[m_ucSendIndex++];
 }
 else
 {
 I2C0_C1 &= ~I2C_C1_TX_MASK;
 Dummy = I2C0_D;
 }
 }
 else
 {
 if(I2C0_S & I2C_S_SRW_MASK)
 {
 // if require ACK from master
 if(I2C0_S & I2C_S_RXAK_MASK)
 {
 // no receive the ACK
 I2C0_C1 &= ~I2C_C1_TX_MASK;
 Dummy = I2C0_D;
 // switch to RX
 }
 else
 {
 I2C0_D = m_ucSendBuff[m_ucSendIndex++];
 }
 }
 else
 {
 m_ucRecBuff[m_ucRecIndex++] = I2C0_D;
 if(m_ucRecIndex > sizeof(uint32_t))
 {
 m_pRxFrameLength = (uint32_t *)&m_ucRecBuff[0];
 if(m_ucRecIndex >= (*m_pRxFrameLength))
 {
 // receive a frame data from master
 g_bIICRecFrameFlag = 1;
 Memcpy_Byte((uint8_t*)&g_ucIICRxFrameBuff[0],(uint8_t*)&m_ucRecBuff[0],m_ucRecIndex);
 // reset index counter
 m_ucRecIndex = 0;
 // change MCU state to BUSY
 m_ucSendBuff[0] = SLAVE_MCU_STATE_BUSY;
 }
 }
 }
 }
 }
}

After IIC receives a data frame, it will set the flag (g_bIICRecFrameFlag) so that the application code can further process
data frame.

Software architecture

IIC Bootloader Design on the Kinetis L Series, Rev. 0, 01/2013

Freescale Semiconductor, Inc. 7

3.2.3 Command description
In bootloader loop, always check the flag (g_bIICRecFrameFlag). When the flag (g_bIICRecFrameFlag) is 1, it will start to
handle the received frame. At first, use check sum to verify if frame received is correct and after the verification, unpackage
the frame and handle the appropriate command. Below is the format of the received frame.

Total data
length(4 bytes)

Command (1 byte) Address (4 bytes) Number of data (1
byte)

Data Check Sum (1
byte)

A brief summary of commands is given in the following table.

Command Function Command Loader positive
acknowledge

Loader negative
acknowledge

Hook up 0x02 0x82, 0xFC 0x82, 0x03

Ident 0x49 0xC9, ident information 0xC9, 0x03

Erase sector 0x45 0xC5, 0xFC 0xC5, 0x03

Write 0x57 0xD7, 0xFC 0xD7, 0x03

Read 0x52 0xD2, data 0xD2, 0x03

• Hook up Command

The received data package of Hook up command (coded as 0x02) is as given below.

Total data length
(4 bytes)

Command (1
byte)

Address(4
bytes)

Number of data
(1 byte)

Data Check Sum (1
byte)

6 0x02 - - - CS

The Command acknowledge is given below.

Command (1 byte) Data

0x82 0xFC/0x03

• If the status received is 0xFC, it indicates that the target board is working in bootloader mode, and gets ready to
communicate with the convert board.

• If the status received is 0x03, it indicate that it is in the user mode, and can’t receive other command.
• Ident command

The received data package of Ident command (coded as 0x49), is shown in the following table.

Total data length
(4 bytes)

Command (1
byte)

Address (4
bytes)

Number of data
(1 byte)

data Check Sum (1
byte)

6 0x49 - - - CS

The required MCU information is given below.

• Protocol version— 1 byte
• System Device Identification Register (SDID) content ($14A for the K60 Family), r(13-16 bits) is the chip

revision number reflecting the current silicon level — 2 bytes
• Number of reprogrammable memory areas—4 bytes
• Start address of the reprogrammable area—4 bytes

Software architecture

IIC Bootloader Design on the Kinetis L Series, Rev. 0, 01/2013

8 Freescale Semiconductor, Inc.

• End address of reprogrammable memory area—4 bytes
• Address of the original vector table (1KB)—4 bytes
• Address of the new vector table (1KB)—4 bytes
• Length of the MCU erase blocks—4 bytes
• Length of the MCU write blocks—4 bytes
• Identification string, zero terminated—n bytes

One structure body for ident information is shown in the following code snippet.

typedef uint32_t addrtype;
typedef struct
{
 unsigned char Reserve ; // reserve bytes for 4 bytes align
 unsigned char Version; /** version */
 uint16_t Sdid; /** Sd Id */
 addrtype BlocksCnt; /** count of flash blocks */
 addrtype FlashStartAddress; /** flash blocks descriptor */
 addrtype FlashEndAddress;
 addrtype RelocatedVectors; /** Relocated interrupts vector
table */
 addrtype InterruptsVectors; /** Interrupts vector table */
 addrtype EraseBlockSize; /** Erase Block Size */
 addrtype WriteBlockSize; /** Write Block Size */
 char IdString[ID_STRING_MAX]; /** Id string */
}FC_IDENT_INFO;

Command acknowledge is shown below.

Command (1 byte) Data

0xC9 Ident information

• Erase command

The received data package of the Erase command (coded as 0x45) is shown in the following table.

Total data length
(4 bytes)

Command (1
byte)

Address (4
bytes)

Number of data
(1 byte)

Data Check Sum (1
byte)

10 0x45 Address - - CS

The command acknowledge is given below.

Command (1 byte) Status

0xC5 0xFC/0x03

• Write command

The received data package of the Write command (coded as 0x57), is given below.

Total data length
(4 bytes)

Command (1
byte)

Address (4
bytes)

Number of data
(1 byte)

Data Check Sum (1
bytes)

Total length 0x57 Address - - CS

The command acknowledge is shown in the following table.

Command (1 byte) Status

0xD7 0xFC/0x03

• Read command

Software architecture

IIC Bootloader Design on the Kinetis L Series, Rev. 0, 01/2013

Freescale Semiconductor, Inc. 9

The received data package of the Read command (coded as 0x52), is given below.

Total data length
(4 bytes)

Command (1
byte)

Address(4
bytes)

Number of data
(1 byte)

Data Check Sum (1
byte)

11 0x52 Address Data length
to be read

- CS

Command acknowledge is given below.

Command (1 byte) Data

0xD2 data

• Quit command

This command does not need any acknowledge.

After receiving this command, it is required to modify flag and jump to the start address of new interrupt vector table.

4 Memory allocation
The bootloader code occupies the first region of the FLASH memory (the lowest memory address space).This placement
moves the beginning of the available memory space and it is necessary to shift this address in the user application linker files
(ICF file in IAR and in LCF file in CodeWarrior). An example of the ICF and LCF linker files modification is as follows:

Kinetis L KL05Z

An example of modification ICF file in IAR6.4 is given by the following code snippet.

// default linker file

define symbol __ICFEDIT_region_ROM_start__ = 0x00;

// modified Linker file for KL05Z 32k flash

define symbol __ICFEDIT_region_ROM_start__ = 0x1000;

Memory allocation

IIC Bootloader Design on the Kinetis L Series, Rev. 0, 01/2013

10 Freescale Semiconductor, Inc.

Figure 5. Memory allocation

In the user code, the user can change work mode to bootloader mode so that it can update code again at the next reset. In
sample code, whenever a "b" is received from UART, it will change flag to bootloader mode. Following is the sample code
snippet.

if(UART0_S1 & UART0_S1_RDRF_MASK)
{
ch = UART0_D;
 if(ch == 'b')
 {
 // change flag
 Write_WorkMode(WORK_MODE_BOOT_LOADER);
 // generate a software reset, wait MCU reset and enter into boot loader mode
 SCB_AIRCR = SCB_AIRCR_SYSRESETREQ_MASK|0x05fa0000;
 while(1);
 }
}

5 Conclusion
This document introduces a way of implementing IIC bootloader by using a bridge board as the convert board, and the other
board as target board. The users can also add bootloader by themselves in the application software.

Conclusion

IIC Bootloader Design on the Kinetis L Series, Rev. 0, 01/2013

Freescale Semiconductor, Inc. 11

6 References
The following reference documents are available on freescale.com

• KL05P48M48SF1RM: KL05 Sub-Family Reference Manual
• AN2295: Developer’s Serial Bootloader for M68HC08 and HCS08 MCUs
• KLQRUG, Kinetis L Peripheral Module Quick Reference User Guide

7 Glossary
UART Universal Asynchronous Receiver/Transmitter

IIC Inter-Integrated Circuit

FCCOB Flash Common Command OBject

WDOG Watchdog

MCG Multipurpose Clock Generator

References

IIC Bootloader Design on the Kinetis L Series, Rev. 0, 01/2013

12 Freescale Semiconductor, Inc.

http://www.freescale.com

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

Document Number: AN4655
Rev. 0, 01/2013

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductors products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any liability, including without limitation
consequential or incidental damages. "Typical" parameters that may be provided in
Freescale Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters,
including "Typicals", must be validated for each customer application by customer's
technical experts. Freescale Semiconductor does not convey any license under its patent
rights nor the rights of others. Freescale Semiconductor products are not designed,
intended, or authorized for use as components in systems intended for surgical implant
into the body, or other applications intended to support or sustain life, or for any other
application in which failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claims alleges
that Freescale Semiconductor was negligent regarding the design or manufacture of
the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts.
For further information, see http://www.freescale.com or contact your Freescale
sales representative.

For information on Freescale's Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© 2013 Freescale Semiconductor, Inc.

	Overview
	Introduction
	Software architecture
	Convert board
	Target board
	Flag in flash
	IIC slave driver
	Command description

	Memory allocation
	Conclusion
	References
	Glossary

